Properties

Label 4-810e2-1.1-c3e2-0-8
Degree $4$
Conductor $656100$
Sign $1$
Analytic cond. $2284.03$
Root an. cond. $6.91314$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 5·5-s + 4·7-s − 8·8-s + 10·10-s + 12·11-s + 58·13-s + 8·14-s − 16·16-s − 132·17-s − 200·19-s + 24·22-s + 132·23-s + 116·26-s − 90·29-s − 152·31-s − 264·34-s + 20·35-s − 68·37-s − 400·38-s − 40·40-s − 438·41-s − 32·43-s + 264·46-s − 204·47-s + 343·49-s − 444·53-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.447·5-s + 0.215·7-s − 0.353·8-s + 0.316·10-s + 0.328·11-s + 1.23·13-s + 0.152·14-s − 1/4·16-s − 1.88·17-s − 2.41·19-s + 0.232·22-s + 1.19·23-s + 0.874·26-s − 0.576·29-s − 0.880·31-s − 1.33·34-s + 0.0965·35-s − 0.302·37-s − 1.70·38-s − 0.158·40-s − 1.66·41-s − 0.113·43-s + 0.846·46-s − 0.633·47-s + 49-s − 1.15·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 656100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 656100 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(656100\)    =    \(2^{2} \cdot 3^{8} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(2284.03\)
Root analytic conductor: \(6.91314\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 656100,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.554815638\)
\(L(\frac12)\) \(\approx\) \(1.554815638\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - p T + p^{2} T^{2} \)
3 \( 1 \)
5$C_2$ \( 1 - p T + p^{2} T^{2} \)
good7$C_2^2$ \( 1 - 4 T - 327 T^{2} - 4 p^{3} T^{3} + p^{6} T^{4} \)
11$C_2^2$ \( 1 - 12 T - 1187 T^{2} - 12 p^{3} T^{3} + p^{6} T^{4} \)
13$C_2^2$ \( 1 - 58 T + 1167 T^{2} - 58 p^{3} T^{3} + p^{6} T^{4} \)
17$C_2$ \( ( 1 + 66 T + p^{3} T^{2} )^{2} \)
19$C_2$ \( ( 1 + 100 T + p^{3} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 132 T + 5257 T^{2} - 132 p^{3} T^{3} + p^{6} T^{4} \)
29$C_2^2$ \( 1 + 90 T - 16289 T^{2} + 90 p^{3} T^{3} + p^{6} T^{4} \)
31$C_2^2$ \( 1 + 152 T - 6687 T^{2} + 152 p^{3} T^{3} + p^{6} T^{4} \)
37$C_2$ \( ( 1 + 34 T + p^{3} T^{2} )^{2} \)
41$C_2^2$ \( 1 + 438 T + 122923 T^{2} + 438 p^{3} T^{3} + p^{6} T^{4} \)
43$C_2^2$ \( 1 + 32 T - 78483 T^{2} + 32 p^{3} T^{3} + p^{6} T^{4} \)
47$C_2^2$ \( 1 + 204 T - 62207 T^{2} + 204 p^{3} T^{3} + p^{6} T^{4} \)
53$C_2$ \( ( 1 + 222 T + p^{3} T^{2} )^{2} \)
59$C_2^2$ \( 1 - 420 T - 28979 T^{2} - 420 p^{3} T^{3} + p^{6} T^{4} \)
61$C_2^2$ \( 1 + 902 T + 586623 T^{2} + 902 p^{3} T^{3} + p^{6} T^{4} \)
67$C_2^2$ \( 1 - 1024 T + 747813 T^{2} - 1024 p^{3} T^{3} + p^{6} T^{4} \)
71$C_2$ \( ( 1 + 432 T + p^{3} T^{2} )^{2} \)
73$C_2$ \( ( 1 - 362 T + p^{3} T^{2} )^{2} \)
79$C_2^2$ \( 1 - 160 T - 467439 T^{2} - 160 p^{3} T^{3} + p^{6} T^{4} \)
83$C_2^2$ \( 1 - 72 T - 566603 T^{2} - 72 p^{3} T^{3} + p^{6} T^{4} \)
89$C_2$ \( ( 1 + 810 T + p^{3} T^{2} )^{2} \)
97$C_2^2$ \( 1 + 1106 T + 310563 T^{2} + 1106 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.24810430484240464237829744159, −9.504340220351672998132276595240, −9.155558070442281733184108638277, −8.711898775279448489341358361673, −8.535954359631225720758120164837, −8.172412969522017232258154424151, −7.29442299112644107098340165881, −6.83359663725355919200559533509, −6.49261622379655524677944765765, −6.24815134221021108176032671924, −5.61929477209712437878053246170, −5.18188610301097466197225727493, −4.45661788166544685773343518797, −4.39440334422058245109952907267, −3.68567570352317426149949588926, −3.27588430535074214534442888341, −2.40142022062648563028881384523, −1.94670932595295927389439150211, −1.42134420234493268272021038845, −0.28173481907848503254773550097, 0.28173481907848503254773550097, 1.42134420234493268272021038845, 1.94670932595295927389439150211, 2.40142022062648563028881384523, 3.27588430535074214534442888341, 3.68567570352317426149949588926, 4.39440334422058245109952907267, 4.45661788166544685773343518797, 5.18188610301097466197225727493, 5.61929477209712437878053246170, 6.24815134221021108176032671924, 6.49261622379655524677944765765, 6.83359663725355919200559533509, 7.29442299112644107098340165881, 8.172412969522017232258154424151, 8.535954359631225720758120164837, 8.711898775279448489341358361673, 9.155558070442281733184108638277, 9.504340220351672998132276595240, 10.24810430484240464237829744159

Graph of the $Z$-function along the critical line