Properties

Label 4-810e2-1.1-c3e2-0-7
Degree $4$
Conductor $656100$
Sign $1$
Analytic cond. $2284.03$
Root an. cond. $6.91314$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 5·5-s − 14·7-s − 8·8-s + 10·10-s − 6·11-s − 68·13-s − 28·14-s − 16·16-s + 156·17-s + 88·19-s − 12·22-s − 120·23-s − 136·26-s − 126·29-s + 244·31-s + 312·34-s − 70·35-s − 608·37-s + 176·38-s − 40·40-s + 480·41-s − 104·43-s − 240·46-s − 600·47-s + 343·49-s − 516·53-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.447·5-s − 0.755·7-s − 0.353·8-s + 0.316·10-s − 0.164·11-s − 1.45·13-s − 0.534·14-s − 1/4·16-s + 2.22·17-s + 1.06·19-s − 0.116·22-s − 1.08·23-s − 1.02·26-s − 0.806·29-s + 1.41·31-s + 1.57·34-s − 0.338·35-s − 2.70·37-s + 0.751·38-s − 0.158·40-s + 1.82·41-s − 0.368·43-s − 0.769·46-s − 1.86·47-s + 49-s − 1.33·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 656100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 656100 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(656100\)    =    \(2^{2} \cdot 3^{8} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(2284.03\)
Root analytic conductor: \(6.91314\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 656100,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.415106883\)
\(L(\frac12)\) \(\approx\) \(1.415106883\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - p T + p^{2} T^{2} \)
3 \( 1 \)
5$C_2$ \( 1 - p T + p^{2} T^{2} \)
good7$C_2^2$ \( 1 + 2 p T - 3 p^{2} T^{2} + 2 p^{4} T^{3} + p^{6} T^{4} \)
11$C_2^2$ \( 1 + 6 T - 1295 T^{2} + 6 p^{3} T^{3} + p^{6} T^{4} \)
13$C_2^2$ \( 1 + 68 T + 2427 T^{2} + 68 p^{3} T^{3} + p^{6} T^{4} \)
17$C_2$ \( ( 1 - 78 T + p^{3} T^{2} )^{2} \)
19$C_2$ \( ( 1 - 44 T + p^{3} T^{2} )^{2} \)
23$C_2^2$ \( 1 + 120 T + 2233 T^{2} + 120 p^{3} T^{3} + p^{6} T^{4} \)
29$C_2^2$ \( 1 + 126 T - 8513 T^{2} + 126 p^{3} T^{3} + p^{6} T^{4} \)
31$C_2^2$ \( 1 - 244 T + 29745 T^{2} - 244 p^{3} T^{3} + p^{6} T^{4} \)
37$C_2$ \( ( 1 + 304 T + p^{3} T^{2} )^{2} \)
41$C_2^2$ \( 1 - 480 T + 161479 T^{2} - 480 p^{3} T^{3} + p^{6} T^{4} \)
43$C_2^2$ \( 1 + 104 T - 68691 T^{2} + 104 p^{3} T^{3} + p^{6} T^{4} \)
47$C_2^2$ \( 1 + 600 T + 256177 T^{2} + 600 p^{3} T^{3} + p^{6} T^{4} \)
53$C_2$ \( ( 1 + 258 T + p^{3} T^{2} )^{2} \)
59$C_2^2$ \( 1 + 534 T + 79777 T^{2} + 534 p^{3} T^{3} + p^{6} T^{4} \)
61$C_2^2$ \( 1 + 362 T - 95937 T^{2} + 362 p^{3} T^{3} + p^{6} T^{4} \)
67$C_2^2$ \( 1 - 4 p T - 51 p^{2} T^{2} - 4 p^{4} T^{3} + p^{6} T^{4} \)
71$C_2$ \( ( 1 + 972 T + p^{3} T^{2} )^{2} \)
73$C_2$ \( ( 1 - 470 T + p^{3} T^{2} )^{2} \)
79$C_2^2$ \( 1 + 1244 T + 1054497 T^{2} + 1244 p^{3} T^{3} + p^{6} T^{4} \)
83$C_2^2$ \( 1 + 396 T - 414971 T^{2} + 396 p^{3} T^{3} + p^{6} T^{4} \)
89$C_2$ \( ( 1 + 972 T + p^{3} T^{2} )^{2} \)
97$C_2^2$ \( 1 - 46 T - 910557 T^{2} - 46 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.07515962067977572533162886955, −9.654815656473822269402845699659, −9.545811076780990486209945250317, −8.821109965430760364129334379176, −8.401728481077574997744826076223, −7.66864431526888342118215882008, −7.51340396021370086516600660038, −7.18414038448278547527218492124, −6.34557156976400250152855756372, −6.10101231172062599908926530671, −5.53635420023510681536322881769, −5.30195790978287636700409965502, −4.72993058818170728910832964292, −4.26999220691637587166254516810, −3.42572469535070706395919132657, −3.17968935316439485258884916323, −2.79179759940288663010719156394, −1.88304406892896568762972992588, −1.30458702128427782373890446337, −0.28124779898681569155790539712, 0.28124779898681569155790539712, 1.30458702128427782373890446337, 1.88304406892896568762972992588, 2.79179759940288663010719156394, 3.17968935316439485258884916323, 3.42572469535070706395919132657, 4.26999220691637587166254516810, 4.72993058818170728910832964292, 5.30195790978287636700409965502, 5.53635420023510681536322881769, 6.10101231172062599908926530671, 6.34557156976400250152855756372, 7.18414038448278547527218492124, 7.51340396021370086516600660038, 7.66864431526888342118215882008, 8.401728481077574997744826076223, 8.821109965430760364129334379176, 9.545811076780990486209945250317, 9.654815656473822269402845699659, 10.07515962067977572533162886955

Graph of the $Z$-function along the critical line