Properties

Label 4-810e2-1.1-c3e2-0-33
Degree $4$
Conductor $656100$
Sign $1$
Analytic cond. $2284.03$
Root an. cond. $6.91314$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 12·4-s + 10·5-s − 2·7-s + 32·8-s + 40·10-s − 48·11-s − 80·13-s − 8·14-s + 80·16-s − 108·17-s − 188·19-s + 120·20-s − 192·22-s − 138·23-s + 75·25-s − 320·26-s − 24·28-s − 30·29-s − 188·31-s + 192·32-s − 432·34-s − 20·35-s − 332·37-s − 752·38-s + 320·40-s − 6·41-s + ⋯
L(s)  = 1  + 1.41·2-s + 3/2·4-s + 0.894·5-s − 0.107·7-s + 1.41·8-s + 1.26·10-s − 1.31·11-s − 1.70·13-s − 0.152·14-s + 5/4·16-s − 1.54·17-s − 2.27·19-s + 1.34·20-s − 1.86·22-s − 1.25·23-s + 3/5·25-s − 2.41·26-s − 0.161·28-s − 0.192·29-s − 1.08·31-s + 1.06·32-s − 2.17·34-s − 0.0965·35-s − 1.47·37-s − 3.21·38-s + 1.26·40-s − 0.0228·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 656100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 656100 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(656100\)    =    \(2^{2} \cdot 3^{8} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(2284.03\)
Root analytic conductor: \(6.91314\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 656100,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - p T )^{2} \)
3 \( 1 \)
5$C_1$ \( ( 1 - p T )^{2} \)
good7$D_{4}$ \( 1 + 2 T + 393 T^{2} + 2 p^{3} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 + 48 T + 1702 T^{2} + 48 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 + 80 T + 5610 T^{2} + 80 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 + 108 T + 12358 T^{2} + 108 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 + 188 T + 18498 T^{2} + 188 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 + 6 p T + 19009 T^{2} + 6 p^{4} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 + 30 T + 42067 T^{2} + 30 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 + 188 T + 55722 T^{2} + 188 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 + 332 T + 97758 T^{2} + 332 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 + 6 T + 42595 T^{2} + 6 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 - 556 T + 233898 T^{2} - 556 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 - 162 T - 4679 T^{2} - 162 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 + 684 T + 414622 T^{2} + 684 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 - 228 T + 178930 T^{2} - 228 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 + 254 T + 300747 T^{2} + 254 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 - 826 T + 515001 T^{2} - 826 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 + 912 T + 729358 T^{2} + 912 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 - 232 T - 38814 T^{2} - 232 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 + 476 T + 480906 T^{2} + 476 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 - 306 T - 108143 T^{2} - 306 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 - 1086 T + 1703923 T^{2} - 1086 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 - 868 T + 809478 T^{2} - 868 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.614043279780239568824442504743, −9.446224057386102636630186440230, −8.744107278065740252852514148161, −8.353708117010916593891338776116, −7.69477045468636157908344461999, −7.46636556415058898554561302479, −6.78665597283183610446397614783, −6.50457515712120085604895074899, −6.09324282429208822960184648318, −5.57393855982341921134269067257, −5.04582763795030504310360513612, −4.86548974278178968424799304494, −4.13737286118635816968480663026, −3.95355067386488660656451634928, −2.86940576472644504904604898230, −2.55510394254977837758909308098, −2.02683821566991618359215246420, −1.82929336534241510236328010650, 0, 0, 1.82929336534241510236328010650, 2.02683821566991618359215246420, 2.55510394254977837758909308098, 2.86940576472644504904604898230, 3.95355067386488660656451634928, 4.13737286118635816968480663026, 4.86548974278178968424799304494, 5.04582763795030504310360513612, 5.57393855982341921134269067257, 6.09324282429208822960184648318, 6.50457515712120085604895074899, 6.78665597283183610446397614783, 7.46636556415058898554561302479, 7.69477045468636157908344461999, 8.353708117010916593891338776116, 8.744107278065740252852514148161, 9.446224057386102636630186440230, 9.614043279780239568824442504743

Graph of the $Z$-function along the critical line