Properties

Label 4-810e2-1.1-c3e2-0-2
Degree $4$
Conductor $656100$
Sign $1$
Analytic cond. $2284.03$
Root an. cond. $6.91314$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 5·5-s + 4·7-s − 8·8-s − 10·10-s + 42·11-s − 20·13-s + 8·14-s − 16·16-s − 186·17-s + 118·19-s + 84·22-s + 9·23-s − 40·26-s + 120·29-s − 47·31-s − 372·34-s − 20·35-s − 524·37-s + 236·38-s + 40·40-s + 126·41-s + 178·43-s + 18·46-s + 144·47-s + 343·49-s − 1.48e3·53-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.447·5-s + 0.215·7-s − 0.353·8-s − 0.316·10-s + 1.15·11-s − 0.426·13-s + 0.152·14-s − 1/4·16-s − 2.65·17-s + 1.42·19-s + 0.814·22-s + 0.0815·23-s − 0.301·26-s + 0.768·29-s − 0.272·31-s − 1.87·34-s − 0.0965·35-s − 2.32·37-s + 1.00·38-s + 0.158·40-s + 0.479·41-s + 0.631·43-s + 0.0576·46-s + 0.446·47-s + 49-s − 3.84·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 656100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 656100 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(656100\)    =    \(2^{2} \cdot 3^{8} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(2284.03\)
Root analytic conductor: \(6.91314\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 656100,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.8539027528\)
\(L(\frac12)\) \(\approx\) \(0.8539027528\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - p T + p^{2} T^{2} \)
3 \( 1 \)
5$C_2$ \( 1 + p T + p^{2} T^{2} \)
good7$C_2^2$ \( 1 - 4 T - 327 T^{2} - 4 p^{3} T^{3} + p^{6} T^{4} \)
11$C_2^2$ \( 1 - 42 T + 433 T^{2} - 42 p^{3} T^{3} + p^{6} T^{4} \)
13$C_2^2$ \( 1 + 20 T - 1797 T^{2} + 20 p^{3} T^{3} + p^{6} T^{4} \)
17$C_2$ \( ( 1 + 93 T + p^{3} T^{2} )^{2} \)
19$C_2$ \( ( 1 - 59 T + p^{3} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 9 T - 12086 T^{2} - 9 p^{3} T^{3} + p^{6} T^{4} \)
29$C_2^2$ \( 1 - 120 T - 9989 T^{2} - 120 p^{3} T^{3} + p^{6} T^{4} \)
31$C_2^2$ \( 1 + 47 T - 27582 T^{2} + 47 p^{3} T^{3} + p^{6} T^{4} \)
37$C_2$ \( ( 1 + 262 T + p^{3} T^{2} )^{2} \)
41$C_2^2$ \( 1 - 126 T - 53045 T^{2} - 126 p^{3} T^{3} + p^{6} T^{4} \)
43$C_2^2$ \( 1 - 178 T - 47823 T^{2} - 178 p^{3} T^{3} + p^{6} T^{4} \)
47$C_2^2$ \( 1 - 144 T - 83087 T^{2} - 144 p^{3} T^{3} + p^{6} T^{4} \)
53$C_2$ \( ( 1 + 741 T + p^{3} T^{2} )^{2} \)
59$C_2^2$ \( 1 + 444 T - 8243 T^{2} + 444 p^{3} T^{3} + p^{6} T^{4} \)
61$C_2^2$ \( 1 + 221 T - 178140 T^{2} + 221 p^{3} T^{3} + p^{6} T^{4} \)
67$C_2^2$ \( 1 - 538 T - 11319 T^{2} - 538 p^{3} T^{3} + p^{6} T^{4} \)
71$C_2$ \( ( 1 + 690 T + p^{3} T^{2} )^{2} \)
73$C_2$ \( ( 1 + 1126 T + p^{3} T^{2} )^{2} \)
79$C_2^2$ \( 1 + 665 T - 50814 T^{2} + 665 p^{3} T^{3} + p^{6} T^{4} \)
83$C_2^2$ \( 1 - 75 T - 566162 T^{2} - 75 p^{3} T^{3} + p^{6} T^{4} \)
89$C_2$ \( ( 1 - 1086 T + p^{3} T^{2} )^{2} \)
97$C_2^2$ \( 1 + 1544 T + 1471263 T^{2} + 1544 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.35244089591395288850059947338, −9.310517363530664891794130067158, −9.305636941230849243106292939456, −8.716974368978870460528275916347, −8.703087283481579300676929845677, −7.71849758412349843201552210072, −7.51465468573401674226038709066, −6.96254969412827527707059194670, −6.57794196636827774390423265585, −6.17027099838268383320407887343, −5.65332578864454022220749837141, −4.93664643501540634929347995162, −4.65785461220159410841570971472, −4.26648962104952081694893654842, −3.79351773242808896595876118518, −3.07844079670064303598111443721, −2.75073584178580522709338437894, −1.78585113414510919051822459903, −1.37046784436751794002850280141, −0.21669737127033303428434861931, 0.21669737127033303428434861931, 1.37046784436751794002850280141, 1.78585113414510919051822459903, 2.75073584178580522709338437894, 3.07844079670064303598111443721, 3.79351773242808896595876118518, 4.26648962104952081694893654842, 4.65785461220159410841570971472, 4.93664643501540634929347995162, 5.65332578864454022220749837141, 6.17027099838268383320407887343, 6.57794196636827774390423265585, 6.96254969412827527707059194670, 7.51465468573401674226038709066, 7.71849758412349843201552210072, 8.703087283481579300676929845677, 8.716974368978870460528275916347, 9.305636941230849243106292939456, 9.310517363530664891794130067158, 10.35244089591395288850059947338

Graph of the $Z$-function along the critical line