Properties

Label 4-810e2-1.1-c3e2-0-17
Degree $4$
Conductor $656100$
Sign $1$
Analytic cond. $2284.03$
Root an. cond. $6.91314$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 5·5-s − 32·7-s − 8·8-s − 10·10-s + 60·11-s + 34·13-s − 64·14-s − 16·16-s + 84·17-s − 152·19-s + 120·22-s + 68·26-s − 6·29-s + 232·31-s + 168·34-s + 160·35-s + 268·37-s − 304·38-s + 40·40-s − 234·41-s + 412·43-s + 360·47-s + 343·49-s + 444·53-s − 300·55-s + 256·56-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.447·5-s − 1.72·7-s − 0.353·8-s − 0.316·10-s + 1.64·11-s + 0.725·13-s − 1.22·14-s − 1/4·16-s + 1.19·17-s − 1.83·19-s + 1.16·22-s + 0.512·26-s − 0.0384·29-s + 1.34·31-s + 0.847·34-s + 0.772·35-s + 1.19·37-s − 1.29·38-s + 0.158·40-s − 0.891·41-s + 1.46·43-s + 1.11·47-s + 49-s + 1.15·53-s − 0.735·55-s + 0.610·56-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 656100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 656100 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(656100\)    =    \(2^{2} \cdot 3^{8} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(2284.03\)
Root analytic conductor: \(6.91314\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 656100,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.212996795\)
\(L(\frac12)\) \(\approx\) \(3.212996795\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - p T + p^{2} T^{2} \)
3 \( 1 \)
5$C_2$ \( 1 + p T + p^{2} T^{2} \)
good7$C_2^2$ \( 1 + 32 T + 681 T^{2} + 32 p^{3} T^{3} + p^{6} T^{4} \)
11$C_2^2$ \( 1 - 60 T + 2269 T^{2} - 60 p^{3} T^{3} + p^{6} T^{4} \)
13$C_2^2$ \( 1 - 34 T - 1041 T^{2} - 34 p^{3} T^{3} + p^{6} T^{4} \)
17$C_2$ \( ( 1 - 42 T + p^{3} T^{2} )^{2} \)
19$C_2$ \( ( 1 + 4 p T + p^{3} T^{2} )^{2} \)
23$C_2^2$ \( 1 - p^{3} T^{2} + p^{6} T^{4} \)
29$C_2^2$ \( 1 + 6 T - 24353 T^{2} + 6 p^{3} T^{3} + p^{6} T^{4} \)
31$C_2^2$ \( 1 - 232 T + 24033 T^{2} - 232 p^{3} T^{3} + p^{6} T^{4} \)
37$C_2$ \( ( 1 - 134 T + p^{3} T^{2} )^{2} \)
41$C_2^2$ \( 1 + 234 T - 14165 T^{2} + 234 p^{3} T^{3} + p^{6} T^{4} \)
43$C_2^2$ \( 1 - 412 T + 90237 T^{2} - 412 p^{3} T^{3} + p^{6} T^{4} \)
47$C_2^2$ \( 1 - 360 T + 25777 T^{2} - 360 p^{3} T^{3} + p^{6} T^{4} \)
53$C_2$ \( ( 1 - 222 T + p^{3} T^{2} )^{2} \)
59$C_2^2$ \( 1 + 660 T + 230221 T^{2} + 660 p^{3} T^{3} + p^{6} T^{4} \)
61$C_2^2$ \( 1 - 490 T + 13119 T^{2} - 490 p^{3} T^{3} + p^{6} T^{4} \)
67$C_2^2$ \( 1 + 812 T + 358581 T^{2} + 812 p^{3} T^{3} + p^{6} T^{4} \)
71$C_2$ \( ( 1 - 120 T + p^{3} T^{2} )^{2} \)
73$C_2$ \( ( 1 - 746 T + p^{3} T^{2} )^{2} \)
79$C_2^2$ \( 1 + 152 T - 469935 T^{2} + 152 p^{3} T^{3} + p^{6} T^{4} \)
83$C_2^2$ \( 1 - 804 T + 74629 T^{2} - 804 p^{3} T^{3} + p^{6} T^{4} \)
89$C_2$ \( ( 1 + 678 T + p^{3} T^{2} )^{2} \)
97$C_2^2$ \( 1 + 2 p T - 93 p^{2} T^{2} + 2 p^{4} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.01911028492347273981096233158, −9.479096944857846219667136653748, −9.405671121307096273759102441707, −8.848214881277306948057079313164, −8.395208822307702350321096523819, −8.029740175808067916509861505565, −7.37802125234485328490807208166, −6.68369849093669125425275941762, −6.64842736603105063638981962837, −6.01368238490080781420393991091, −5.97891090054215909030413828864, −5.21393995428221737239292592381, −4.36608782396346041358153334149, −4.04265076488216819634517519659, −3.87400883850698906736110299304, −3.14765971809509804338832196463, −2.83060702468102597385727521336, −1.95693317656118713247152338428, −0.988237826964075403564759738576, −0.52284306338248460731448297078, 0.52284306338248460731448297078, 0.988237826964075403564759738576, 1.95693317656118713247152338428, 2.83060702468102597385727521336, 3.14765971809509804338832196463, 3.87400883850698906736110299304, 4.04265076488216819634517519659, 4.36608782396346041358153334149, 5.21393995428221737239292592381, 5.97891090054215909030413828864, 6.01368238490080781420393991091, 6.64842736603105063638981962837, 6.68369849093669125425275941762, 7.37802125234485328490807208166, 8.029740175808067916509861505565, 8.395208822307702350321096523819, 8.848214881277306948057079313164, 9.405671121307096273759102441707, 9.479096944857846219667136653748, 10.01911028492347273981096233158

Graph of the $Z$-function along the critical line