Properties

Label 4-810e2-1.1-c3e2-0-14
Degree $4$
Conductor $656100$
Sign $1$
Analytic cond. $2284.03$
Root an. cond. $6.91314$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 5·5-s + 13·7-s − 8·8-s − 10·10-s − 30·11-s + 61·13-s + 26·14-s − 16·16-s − 24·17-s − 98·19-s − 60·22-s + 18·23-s + 122·26-s − 186·29-s + 160·31-s − 48·34-s − 65·35-s − 182·37-s − 196·38-s + 40·40-s + 378·41-s + 268·43-s + 36·46-s + 144·47-s + 343·49-s − 1.14e3·53-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.447·5-s + 0.701·7-s − 0.353·8-s − 0.316·10-s − 0.822·11-s + 1.30·13-s + 0.496·14-s − 1/4·16-s − 0.342·17-s − 1.18·19-s − 0.581·22-s + 0.163·23-s + 0.920·26-s − 1.19·29-s + 0.926·31-s − 0.242·34-s − 0.313·35-s − 0.808·37-s − 0.836·38-s + 0.158·40-s + 1.43·41-s + 0.950·43-s + 0.115·46-s + 0.446·47-s + 49-s − 2.95·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 656100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 656100 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(656100\)    =    \(2^{2} \cdot 3^{8} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(2284.03\)
Root analytic conductor: \(6.91314\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 656100,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.968228408\)
\(L(\frac12)\) \(\approx\) \(2.968228408\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - p T + p^{2} T^{2} \)
3 \( 1 \)
5$C_2$ \( 1 + p T + p^{2} T^{2} \)
good7$C_2^2$ \( 1 - 13 T - 174 T^{2} - 13 p^{3} T^{3} + p^{6} T^{4} \)
11$C_2^2$ \( 1 + 30 T - 431 T^{2} + 30 p^{3} T^{3} + p^{6} T^{4} \)
13$C_2^2$ \( 1 - 61 T + 1524 T^{2} - 61 p^{3} T^{3} + p^{6} T^{4} \)
17$C_2$ \( ( 1 + 12 T + p^{3} T^{2} )^{2} \)
19$C_2$ \( ( 1 + 49 T + p^{3} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 18 T - 11843 T^{2} - 18 p^{3} T^{3} + p^{6} T^{4} \)
29$C_2^2$ \( 1 + 186 T + 10207 T^{2} + 186 p^{3} T^{3} + p^{6} T^{4} \)
31$C_2^2$ \( 1 - 160 T - 4191 T^{2} - 160 p^{3} T^{3} + p^{6} T^{4} \)
37$C_2$ \( ( 1 + 91 T + p^{3} T^{2} )^{2} \)
41$C_2^2$ \( 1 - 378 T + 73963 T^{2} - 378 p^{3} T^{3} + p^{6} T^{4} \)
43$C_2^2$ \( 1 - 268 T - 7683 T^{2} - 268 p^{3} T^{3} + p^{6} T^{4} \)
47$C_2^2$ \( 1 - 144 T - 83087 T^{2} - 144 p^{3} T^{3} + p^{6} T^{4} \)
53$C_2$ \( ( 1 + 570 T + p^{3} T^{2} )^{2} \)
59$C_2^2$ \( 1 - 204 T - 163763 T^{2} - 204 p^{3} T^{3} + p^{6} T^{4} \)
61$C_2^2$ \( 1 - 877 T + 542148 T^{2} - 877 p^{3} T^{3} + p^{6} T^{4} \)
67$C_2^2$ \( 1 - 187 T - 265794 T^{2} - 187 p^{3} T^{3} + p^{6} T^{4} \)
71$C_2$ \( ( 1 - 606 T + p^{3} T^{2} )^{2} \)
73$C_2$ \( ( 1 - 431 T + p^{3} T^{2} )^{2} \)
79$C_2^2$ \( 1 + 1151 T + 831762 T^{2} + 1151 p^{3} T^{3} + p^{6} T^{4} \)
83$C_2^2$ \( 1 - 102 T - 561383 T^{2} - 102 p^{3} T^{3} + p^{6} T^{4} \)
89$C_2$ \( ( 1 + 984 T + p^{3} T^{2} )^{2} \)
97$C_2^2$ \( 1 - 265 T - 842448 T^{2} - 265 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.01332270960099688817827819702, −9.753140660791585664913237596517, −9.146569516561081907129803724991, −8.594750303052224534446509784490, −8.348615628113532852587654507799, −8.145708006717283551159484393413, −7.28111580912440758886931503730, −7.27112202969919724163430326340, −6.42304786264502955777204880686, −6.03326426346443778690420261439, −5.68318051106950629583654788270, −5.12744425662125923459648681894, −4.44908330928257312304200325030, −4.42038654623191290303836902343, −3.59505545568236913066433889267, −3.39088723236665032727912807706, −2.37287680295988863705438851330, −2.13153649240579534833368947121, −1.14577623768893148799842494685, −0.44385291053414054271330296253, 0.44385291053414054271330296253, 1.14577623768893148799842494685, 2.13153649240579534833368947121, 2.37287680295988863705438851330, 3.39088723236665032727912807706, 3.59505545568236913066433889267, 4.42038654623191290303836902343, 4.44908330928257312304200325030, 5.12744425662125923459648681894, 5.68318051106950629583654788270, 6.03326426346443778690420261439, 6.42304786264502955777204880686, 7.27112202969919724163430326340, 7.28111580912440758886931503730, 8.145708006717283551159484393413, 8.348615628113532852587654507799, 8.594750303052224534446509784490, 9.146569516561081907129803724991, 9.753140660791585664913237596517, 10.01332270960099688817827819702

Graph of the $Z$-function along the critical line