Properties

Label 4-810e2-1.1-c3e2-0-11
Degree $4$
Conductor $656100$
Sign $1$
Analytic cond. $2284.03$
Root an. cond. $6.91314$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 5·5-s + 4·7-s + 8·8-s − 10·10-s − 42·11-s − 20·13-s − 8·14-s − 16·16-s + 186·17-s + 118·19-s + 84·22-s − 9·23-s + 40·26-s − 120·29-s − 47·31-s − 372·34-s + 20·35-s − 524·37-s − 236·38-s + 40·40-s − 126·41-s + 178·43-s + 18·46-s − 144·47-s + 343·49-s + 1.48e3·53-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.447·5-s + 0.215·7-s + 0.353·8-s − 0.316·10-s − 1.15·11-s − 0.426·13-s − 0.152·14-s − 1/4·16-s + 2.65·17-s + 1.42·19-s + 0.814·22-s − 0.0815·23-s + 0.301·26-s − 0.768·29-s − 0.272·31-s − 1.87·34-s + 0.0965·35-s − 2.32·37-s − 1.00·38-s + 0.158·40-s − 0.479·41-s + 0.631·43-s + 0.0576·46-s − 0.446·47-s + 49-s + 3.84·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 656100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 656100 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(656100\)    =    \(2^{2} \cdot 3^{8} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(2284.03\)
Root analytic conductor: \(6.91314\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 656100,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.541815359\)
\(L(\frac12)\) \(\approx\) \(1.541815359\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T + p^{2} T^{2} \)
3 \( 1 \)
5$C_2$ \( 1 - p T + p^{2} T^{2} \)
good7$C_2^2$ \( 1 - 4 T - 327 T^{2} - 4 p^{3} T^{3} + p^{6} T^{4} \)
11$C_2^2$ \( 1 + 42 T + 433 T^{2} + 42 p^{3} T^{3} + p^{6} T^{4} \)
13$C_2^2$ \( 1 + 20 T - 1797 T^{2} + 20 p^{3} T^{3} + p^{6} T^{4} \)
17$C_2$ \( ( 1 - 93 T + p^{3} T^{2} )^{2} \)
19$C_2$ \( ( 1 - 59 T + p^{3} T^{2} )^{2} \)
23$C_2^2$ \( 1 + 9 T - 12086 T^{2} + 9 p^{3} T^{3} + p^{6} T^{4} \)
29$C_2^2$ \( 1 + 120 T - 9989 T^{2} + 120 p^{3} T^{3} + p^{6} T^{4} \)
31$C_2^2$ \( 1 + 47 T - 27582 T^{2} + 47 p^{3} T^{3} + p^{6} T^{4} \)
37$C_2$ \( ( 1 + 262 T + p^{3} T^{2} )^{2} \)
41$C_2^2$ \( 1 + 126 T - 53045 T^{2} + 126 p^{3} T^{3} + p^{6} T^{4} \)
43$C_2^2$ \( 1 - 178 T - 47823 T^{2} - 178 p^{3} T^{3} + p^{6} T^{4} \)
47$C_2^2$ \( 1 + 144 T - 83087 T^{2} + 144 p^{3} T^{3} + p^{6} T^{4} \)
53$C_2$ \( ( 1 - 741 T + p^{3} T^{2} )^{2} \)
59$C_2^2$ \( 1 - 444 T - 8243 T^{2} - 444 p^{3} T^{3} + p^{6} T^{4} \)
61$C_2^2$ \( 1 + 221 T - 178140 T^{2} + 221 p^{3} T^{3} + p^{6} T^{4} \)
67$C_2^2$ \( 1 - 538 T - 11319 T^{2} - 538 p^{3} T^{3} + p^{6} T^{4} \)
71$C_2$ \( ( 1 - 690 T + p^{3} T^{2} )^{2} \)
73$C_2$ \( ( 1 + 1126 T + p^{3} T^{2} )^{2} \)
79$C_2^2$ \( 1 + 665 T - 50814 T^{2} + 665 p^{3} T^{3} + p^{6} T^{4} \)
83$C_2^2$ \( 1 + 75 T - 566162 T^{2} + 75 p^{3} T^{3} + p^{6} T^{4} \)
89$C_2$ \( ( 1 + 1086 T + p^{3} T^{2} )^{2} \)
97$C_2^2$ \( 1 + 1544 T + 1471263 T^{2} + 1544 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.15964445527995928547063944557, −9.668804485263512851769782233707, −9.412087943047277647548016605670, −8.705959307772179576823195293378, −8.369767862771580510344024909728, −8.076580631829488279265429604700, −7.37467071759315143195909536313, −7.13788510808669344188603481550, −7.11709146750802449144862451630, −5.76520253857933826285823931030, −5.69291646384217765238515103626, −5.18778693460000257478791995435, −5.13374816996090467860421100009, −3.86112957081186773296972175141, −3.78391039377971092125854176048, −2.85382063271838268532206752622, −2.56800762964511819174453081283, −1.59018223695680602645219575109, −1.19479600255922974365978127340, −0.41053143475731340760894048316, 0.41053143475731340760894048316, 1.19479600255922974365978127340, 1.59018223695680602645219575109, 2.56800762964511819174453081283, 2.85382063271838268532206752622, 3.78391039377971092125854176048, 3.86112957081186773296972175141, 5.13374816996090467860421100009, 5.18778693460000257478791995435, 5.69291646384217765238515103626, 5.76520253857933826285823931030, 7.11709146750802449144862451630, 7.13788510808669344188603481550, 7.37467071759315143195909536313, 8.076580631829488279265429604700, 8.369767862771580510344024909728, 8.705959307772179576823195293378, 9.412087943047277647548016605670, 9.668804485263512851769782233707, 10.15964445527995928547063944557

Graph of the $Z$-function along the critical line