Properties

Label 4-810e2-1.1-c3e2-0-0
Degree $4$
Conductor $656100$
Sign $1$
Analytic cond. $2284.03$
Root an. cond. $6.91314$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 5·5-s − 2·7-s + 8·8-s − 10·10-s + 9·11-s + 16·13-s + 4·14-s − 16·16-s − 12·17-s − 134·19-s − 18·22-s − 30·23-s − 32·26-s + 45·29-s + 247·31-s + 24·34-s − 10·35-s − 248·37-s + 268·38-s + 40·40-s − 3·41-s − 80·43-s + 60·46-s − 36·47-s + 343·49-s − 972·53-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.447·5-s − 0.107·7-s + 0.353·8-s − 0.316·10-s + 0.246·11-s + 0.341·13-s + 0.0763·14-s − 1/4·16-s − 0.171·17-s − 1.61·19-s − 0.174·22-s − 0.271·23-s − 0.241·26-s + 0.288·29-s + 1.43·31-s + 0.121·34-s − 0.0482·35-s − 1.10·37-s + 1.14·38-s + 0.158·40-s − 0.0114·41-s − 0.283·43-s + 0.192·46-s − 0.111·47-s + 49-s − 2.51·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 656100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 656100 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(656100\)    =    \(2^{2} \cdot 3^{8} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(2284.03\)
Root analytic conductor: \(6.91314\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 656100,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.2323994278\)
\(L(\frac12)\) \(\approx\) \(0.2323994278\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T + p^{2} T^{2} \)
3 \( 1 \)
5$C_2$ \( 1 - p T + p^{2} T^{2} \)
good7$C_2^2$ \( 1 + 2 T - 339 T^{2} + 2 p^{3} T^{3} + p^{6} T^{4} \)
11$C_2^2$ \( 1 - 9 T - 1250 T^{2} - 9 p^{3} T^{3} + p^{6} T^{4} \)
13$C_2^2$ \( 1 - 16 T - 1941 T^{2} - 16 p^{3} T^{3} + p^{6} T^{4} \)
17$C_2$ \( ( 1 + 6 T + p^{3} T^{2} )^{2} \)
19$C_2$ \( ( 1 + 67 T + p^{3} T^{2} )^{2} \)
23$C_2^2$ \( 1 + 30 T - 11267 T^{2} + 30 p^{3} T^{3} + p^{6} T^{4} \)
29$C_2^2$ \( 1 - 45 T - 22364 T^{2} - 45 p^{3} T^{3} + p^{6} T^{4} \)
31$C_2^2$ \( 1 - 247 T + 31218 T^{2} - 247 p^{3} T^{3} + p^{6} T^{4} \)
37$C_2$ \( ( 1 + 124 T + p^{3} T^{2} )^{2} \)
41$C_2^2$ \( 1 + 3 T - 68912 T^{2} + 3 p^{3} T^{3} + p^{6} T^{4} \)
43$C_2^2$ \( 1 + 80 T - 73107 T^{2} + 80 p^{3} T^{3} + p^{6} T^{4} \)
47$C_2^2$ \( 1 + 36 T - 102527 T^{2} + 36 p^{3} T^{3} + p^{6} T^{4} \)
53$C_2$ \( ( 1 + 486 T + p^{3} T^{2} )^{2} \)
59$C_2^2$ \( 1 + 249 T - 143378 T^{2} + 249 p^{3} T^{3} + p^{6} T^{4} \)
61$C_2^2$ \( 1 - 10 T - 226881 T^{2} - 10 p^{3} T^{3} + p^{6} T^{4} \)
67$C_2^2$ \( 1 - 322 T - 197079 T^{2} - 322 p^{3} T^{3} + p^{6} T^{4} \)
71$C_2$ \( ( 1 + 453 T + p^{3} T^{2} )^{2} \)
73$C_2$ \( ( 1 + 346 T + p^{3} T^{2} )^{2} \)
79$C_2^2$ \( 1 - 352 T - 369135 T^{2} - 352 p^{3} T^{3} + p^{6} T^{4} \)
83$C_2^2$ \( 1 - 204 T - 530171 T^{2} - 204 p^{3} T^{3} + p^{6} T^{4} \)
89$C_2$ \( ( 1 + 729 T + p^{3} T^{2} )^{2} \)
97$C_2^2$ \( 1 + 716 T - 400017 T^{2} + 716 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.29878978531305185569541728261, −9.486561865093999448510032672392, −9.347047526250006138605400814329, −8.635699329289032773038358357261, −8.618570937095451239685859266106, −7.929486377145118618592716261723, −7.80519458748246404743869963617, −6.84927218353861007105476395591, −6.72109686513836596150030909690, −6.25397886831394779055501196128, −5.81985884371208729966713699079, −5.15225813483892924948970086189, −4.70147157211585081119672892256, −4.10504319313035109193282272965, −3.78961647115509477691930253472, −2.78621393457628079302206550815, −2.55069524831290646288321004840, −1.44860501267533388384833964606, −1.44180042706952354295626631336, −0.14655382678887646394638648107, 0.14655382678887646394638648107, 1.44180042706952354295626631336, 1.44860501267533388384833964606, 2.55069524831290646288321004840, 2.78621393457628079302206550815, 3.78961647115509477691930253472, 4.10504319313035109193282272965, 4.70147157211585081119672892256, 5.15225813483892924948970086189, 5.81985884371208729966713699079, 6.25397886831394779055501196128, 6.72109686513836596150030909690, 6.84927218353861007105476395591, 7.80519458748246404743869963617, 7.929486377145118618592716261723, 8.618570937095451239685859266106, 8.635699329289032773038358357261, 9.347047526250006138605400814329, 9.486561865093999448510032672392, 10.29878978531305185569541728261

Graph of the $Z$-function along the critical line