Properties

Label 4-800e2-1.1-c3e2-0-16
Degree $4$
Conductor $640000$
Sign $1$
Analytic cond. $2227.98$
Root an. cond. $6.87033$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·3-s − 8·7-s − 6·9-s − 64·21-s + 104·23-s − 392·27-s − 316·29-s − 340·41-s − 632·43-s − 488·47-s − 638·49-s + 164·61-s + 48·63-s − 1.38e3·67-s + 832·69-s − 1.71e3·81-s − 1.88e3·83-s − 2.52e3·87-s + 12·89-s + 2.02e3·101-s − 88·103-s − 3.62e3·107-s + 4.02e3·109-s − 806·121-s − 2.72e3·123-s + 127-s − 5.05e3·129-s + ⋯
L(s)  = 1  + 1.53·3-s − 0.431·7-s − 2/9·9-s − 0.665·21-s + 0.942·23-s − 2.79·27-s − 2.02·29-s − 1.29·41-s − 2.24·43-s − 1.51·47-s − 1.86·49-s + 0.344·61-s + 0.0959·63-s − 2.52·67-s + 1.45·69-s − 2.35·81-s − 2.48·83-s − 3.11·87-s + 0.0142·89-s + 1.99·101-s − 0.0841·103-s − 3.27·107-s + 3.53·109-s − 0.605·121-s − 1.99·123-s + 0.000698·127-s − 3.45·129-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 640000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 640000 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(640000\)    =    \(2^{10} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(2227.98\)
Root analytic conductor: \(6.87033\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 640000,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3$C_2$ \( ( 1 - 4 T + p^{3} T^{2} )^{2} \)
7$C_2$ \( ( 1 + 4 T + p^{3} T^{2} )^{2} \)
11$C_2^2$ \( 1 + 806 T^{2} + p^{6} T^{4} \)
13$C_2^2$ \( 1 + 3930 T^{2} + p^{6} T^{4} \)
17$C_2^2$ \( 1 + 7970 T^{2} + p^{6} T^{4} \)
19$C_2^2$ \( 1 - 2986 T^{2} + p^{6} T^{4} \)
23$C_2$ \( ( 1 - 52 T + p^{3} T^{2} )^{2} \)
29$C_2$ \( ( 1 + 158 T + p^{3} T^{2} )^{2} \)
31$C_2^2$ \( 1 + 29886 T^{2} + p^{6} T^{4} \)
37$C_2^2$ \( 1 + 22890 T^{2} + p^{6} T^{4} \)
41$C_2$ \( ( 1 + 170 T + p^{3} T^{2} )^{2} \)
43$C_2$ \( ( 1 + 316 T + p^{3} T^{2} )^{2} \)
47$C_2$ \( ( 1 + 244 T + p^{3} T^{2} )^{2} \)
53$C_2^2$ \( 1 + 52298 T^{2} + p^{6} T^{4} \)
59$C_2^2$ \( 1 - 6842 T^{2} + p^{6} T^{4} \)
61$C_2$ \( ( 1 - 82 T + p^{3} T^{2} )^{2} \)
67$C_2$ \( ( 1 + 692 T + p^{3} T^{2} )^{2} \)
71$C_2^2$ \( 1 - 182482 T^{2} + p^{6} T^{4} \)
73$C_2^2$ \( 1 + 592434 T^{2} + p^{6} T^{4} \)
79$C_2^2$ \( 1 + 867294 T^{2} + p^{6} T^{4} \)
83$C_2$ \( ( 1 + 940 T + p^{3} T^{2} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p^{3} T^{2} )^{2} \)
97$C_2^2$ \( 1 + 665346 T^{2} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.400097866505981300357598014738, −9.287240871899729315641205513772, −8.685937561397672258895861497817, −8.574921341532598736542671858358, −7.926260230411318492674464067068, −7.81057221619692224516987487449, −7.10189904281048140512621077380, −6.76414057158544763348522265944, −6.14639696963288802742516766422, −5.71314752121280629264017633902, −5.12788320388749020751040359257, −4.75619992829946513282469501778, −3.82351669212760419386627883124, −3.49912174229817472368492834088, −3.02036719171712036895509176125, −2.79526411175839626968638715703, −1.73716366806993572092927253180, −1.68200324377131066143234063308, 0, 0, 1.68200324377131066143234063308, 1.73716366806993572092927253180, 2.79526411175839626968638715703, 3.02036719171712036895509176125, 3.49912174229817472368492834088, 3.82351669212760419386627883124, 4.75619992829946513282469501778, 5.12788320388749020751040359257, 5.71314752121280629264017633902, 6.14639696963288802742516766422, 6.76414057158544763348522265944, 7.10189904281048140512621077380, 7.81057221619692224516987487449, 7.926260230411318492674464067068, 8.574921341532598736542671858358, 8.685937561397672258895861497817, 9.287240871899729315641205513772, 9.400097866505981300357598014738

Graph of the $Z$-function along the critical line