Properties

Label 4-7e4-1.1-c7e2-0-3
Degree $4$
Conductor $2401$
Sign $1$
Analytic cond. $234.300$
Root an. cond. $3.91239$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·2-s − 42·3-s + 128·4-s − 84·5-s − 252·6-s + 2.08e3·8-s + 2.18e3·9-s − 504·10-s + 5.56e3·11-s − 5.37e3·12-s + 1.03e4·13-s + 3.52e3·15-s + 1.25e4·16-s − 1.39e4·17-s + 1.31e4·18-s + 5.53e4·19-s − 1.07e4·20-s + 3.34e4·22-s + 9.12e4·23-s − 8.76e4·24-s + 7.81e4·25-s + 6.18e4·26-s − 2.01e5·27-s + 8.32e4·29-s + 2.11e4·30-s + 1.50e5·31-s + 2.67e5·32-s + ⋯
L(s)  = 1  + 0.530·2-s − 0.898·3-s + 4-s − 0.300·5-s − 0.476·6-s + 1.44·8-s + 9-s − 0.159·10-s + 1.26·11-s − 0.898·12-s + 1.30·13-s + 0.269·15-s + 0.764·16-s − 0.690·17-s + 0.530·18-s + 1.85·19-s − 0.300·20-s + 0.668·22-s + 1.56·23-s − 1.29·24-s + 25-s + 0.689·26-s − 1.96·27-s + 0.633·29-s + 0.143·30-s + 0.906·31-s + 1.44·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2401 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2401 ^{s/2} \, \Gamma_{\C}(s+7/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2401\)    =    \(7^{4}\)
Sign: $1$
Analytic conductor: \(234.300\)
Root analytic conductor: \(3.91239\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 2401,\ (\ :7/2, 7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(4.868217338\)
\(L(\frac12)\) \(\approx\) \(4.868217338\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad7 \( 1 \)
good2$C_2^2$ \( 1 - 3 p T - 23 p^{2} T^{2} - 3 p^{8} T^{3} + p^{14} T^{4} \)
3$C_2^2$ \( 1 + 14 p T - 47 p^{2} T^{2} + 14 p^{8} T^{3} + p^{14} T^{4} \)
5$C_2^2$ \( 1 + 84 T - 71069 T^{2} + 84 p^{7} T^{3} + p^{14} T^{4} \)
11$C_2^2$ \( 1 - 5568 T + 11515453 T^{2} - 5568 p^{7} T^{3} + p^{14} T^{4} \)
13$C_2$ \( ( 1 - 5152 T + p^{7} T^{2} )^{2} \)
17$C_2^2$ \( 1 + 13986 T - 214730477 T^{2} + 13986 p^{7} T^{3} + p^{14} T^{4} \)
19$C_2^2$ \( 1 - 55370 T + 2171965161 T^{2} - 55370 p^{7} T^{3} + p^{14} T^{4} \)
23$C_2^2$ \( 1 - 91272 T + 4925752537 T^{2} - 91272 p^{7} T^{3} + p^{14} T^{4} \)
29$C_2$ \( ( 1 - 41610 T + p^{7} T^{2} )^{2} \)
31$C_2^2$ \( 1 - 150332 T - 4912903887 T^{2} - 150332 p^{7} T^{3} + p^{14} T^{4} \)
37$C_2^2$ \( 1 - 136366 T - 76336191177 T^{2} - 136366 p^{7} T^{3} + p^{14} T^{4} \)
41$C_2$ \( ( 1 - 510258 T + p^{7} T^{2} )^{2} \)
43$C_2$ \( ( 1 + 172072 T + p^{7} T^{2} )^{2} \)
47$C_2^2$ \( 1 + 519036 T - 237224751167 T^{2} + 519036 p^{7} T^{3} + p^{14} T^{4} \)
53$C_2^2$ \( 1 - 59202 T - 1171206263033 T^{2} - 59202 p^{7} T^{3} + p^{14} T^{4} \)
59$C_2^2$ \( 1 - 1979250 T + 1428779077681 T^{2} - 1979250 p^{7} T^{3} + p^{14} T^{4} \)
61$C_2^2$ \( 1 + 2988748 T + 5789871771483 T^{2} + 2988748 p^{7} T^{3} + p^{14} T^{4} \)
67$C_2^2$ \( 1 + 2409404 T - 255483970107 T^{2} + 2409404 p^{7} T^{3} + p^{14} T^{4} \)
71$C_2$ \( ( 1 - 1504512 T + p^{7} T^{2} )^{2} \)
73$C_2^2$ \( 1 + 1821022 T - 7731277394613 T^{2} + 1821022 p^{7} T^{3} + p^{14} T^{4} \)
79$C_2^2$ \( 1 - 1669240 T - 16417546808559 T^{2} - 1669240 p^{7} T^{3} + p^{14} T^{4} \)
83$C_2$ \( ( 1 + 696738 T + p^{7} T^{2} )^{2} \)
89$C_2^2$ \( 1 - 5558490 T - 13334523815429 T^{2} - 5558490 p^{7} T^{3} + p^{14} T^{4} \)
97$C_2$ \( ( 1 + 101822 p T + p^{7} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.40591685372181726399045825316, −13.53803198236763838544777526103, −13.40498860176904166377142318774, −12.63366814638080064746727137989, −11.78696403231681380475887039981, −11.60556542668725723816973507553, −10.90035893914641952164294288928, −10.77041974407164282372210092802, −9.651022714812939654547548317915, −9.114069267933346319654723565261, −8.016281750306758096755332324395, −7.29206463168736336374377129753, −6.72462174503420333161805255610, −6.27571594301294274646563147979, −5.32373901489128142115944817965, −4.52047436501851343676281773259, −3.87434579094005729480139856716, −2.81702066467719287029184321868, −1.23871927997160520166034294244, −1.14327375036693190033429883802, 1.14327375036693190033429883802, 1.23871927997160520166034294244, 2.81702066467719287029184321868, 3.87434579094005729480139856716, 4.52047436501851343676281773259, 5.32373901489128142115944817965, 6.27571594301294274646563147979, 6.72462174503420333161805255610, 7.29206463168736336374377129753, 8.016281750306758096755332324395, 9.114069267933346319654723565261, 9.651022714812939654547548317915, 10.77041974407164282372210092802, 10.90035893914641952164294288928, 11.60556542668725723816973507553, 11.78696403231681380475887039981, 12.63366814638080064746727137989, 13.40498860176904166377142318774, 13.53803198236763838544777526103, 14.40591685372181726399045825316

Graph of the $Z$-function along the critical line