Properties

Label 4-7e2-1.1-c11e2-0-0
Degree $4$
Conductor $49$
Sign $1$
Analytic cond. $28.9272$
Root an. cond. $2.31913$
Motivic weight $11$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 54·2-s + 120·3-s + 1.46e3·4-s − 1.35e4·5-s − 6.48e3·6-s + 3.36e4·7-s − 1.10e5·8-s − 2.22e5·9-s + 7.29e5·10-s − 7.50e5·11-s + 1.75e5·12-s − 9.54e3·13-s − 1.81e6·14-s − 1.62e6·15-s + 5.63e6·16-s + 4.16e6·17-s + 1.19e7·18-s − 1.79e7·19-s − 1.97e7·20-s + 4.03e6·21-s + 4.05e7·22-s − 6.61e7·23-s − 1.32e7·24-s + 3.93e7·25-s + 5.15e5·26-s − 3.38e7·27-s + 4.90e7·28-s + ⋯
L(s)  = 1  − 1.19·2-s + 0.285·3-s + 0.712·4-s − 1.93·5-s − 0.340·6-s + 0.755·7-s − 1.19·8-s − 1.25·9-s + 2.30·10-s − 1.40·11-s + 0.203·12-s − 0.00713·13-s − 0.902·14-s − 0.550·15-s + 1.34·16-s + 0.710·17-s + 1.49·18-s − 1.66·19-s − 1.37·20-s + 0.215·21-s + 1.67·22-s − 2.14·23-s − 0.340·24-s + 0.806·25-s + 0.00851·26-s − 0.453·27-s + 0.538·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49 ^{s/2} \, \Gamma_{\C}(s+11/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(49\)    =    \(7^{2}\)
Sign: $1$
Analytic conductor: \(28.9272\)
Root analytic conductor: \(2.31913\)
Motivic weight: \(11\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 49,\ (\ :11/2, 11/2),\ 1)\)

Particular Values

\(L(6)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad7$C_1$ \( ( 1 - p^{5} T )^{2} \)
good2$D_{4}$ \( 1 + 27 p T + 91 p^{4} T^{2} + 27 p^{12} T^{3} + p^{22} T^{4} \)
3$D_{4}$ \( 1 - 40 p T + 26290 p^{2} T^{2} - 40 p^{12} T^{3} + p^{22} T^{4} \)
5$D_{4}$ \( 1 + 108 p^{3} T + 5715274 p^{2} T^{2} + 108 p^{14} T^{3} + p^{22} T^{4} \)
11$D_{4}$ \( 1 + 68256 p T + 653251941286 T^{2} + 68256 p^{12} T^{3} + p^{22} T^{4} \)
13$D_{4}$ \( 1 + 9548 T + 580074739914 T^{2} + 9548 p^{11} T^{3} + p^{22} T^{4} \)
17$D_{4}$ \( 1 - 4160052 T + 72837924685942 T^{2} - 4160052 p^{11} T^{3} + p^{22} T^{4} \)
19$D_{4}$ \( 1 + 17998712 T + 293399338219938 T^{2} + 17998712 p^{11} T^{3} + p^{22} T^{4} \)
23$D_{4}$ \( 1 + 66161016 T + 2994683043115918 T^{2} + 66161016 p^{11} T^{3} + p^{22} T^{4} \)
29$D_{4}$ \( 1 - 2121228 p T + 12823193731307518 T^{2} - 2121228 p^{12} T^{3} + p^{22} T^{4} \)
31$D_{4}$ \( 1 + 15281552 T + 44544265736191854 T^{2} + 15281552 p^{11} T^{3} + p^{22} T^{4} \)
37$D_{4}$ \( 1 + 527218340 T + 315935809764623790 T^{2} + 527218340 p^{11} T^{3} + p^{22} T^{4} \)
41$D_{4}$ \( 1 + 178276140 T + 1103495454485680198 T^{2} + 178276140 p^{11} T^{3} + p^{22} T^{4} \)
43$D_{4}$ \( 1 - 1826745232 T + 2408495597390567334 T^{2} - 1826745232 p^{11} T^{3} + p^{22} T^{4} \)
47$D_{4}$ \( 1 - 568240704 T + 125222806434661774 T^{2} - 568240704 p^{11} T^{3} + p^{22} T^{4} \)
53$D_{4}$ \( 1 + 4185816372 T + 8708326678160294206 T^{2} + 4185816372 p^{11} T^{3} + p^{22} T^{4} \)
59$D_{4}$ \( 1 - 3111345000 T + 25961868574953911218 T^{2} - 3111345000 p^{11} T^{3} + p^{22} T^{4} \)
61$D_{4}$ \( 1 - 15042595060 T + \)\(13\!\cdots\!78\)\( T^{2} - 15042595060 p^{11} T^{3} + p^{22} T^{4} \)
67$D_{4}$ \( 1 - 9856523968 T + \)\(12\!\cdots\!18\)\( T^{2} - 9856523968 p^{11} T^{3} + p^{22} T^{4} \)
71$D_{4}$ \( 1 + 24312011328 T + \)\(59\!\cdots\!02\)\( T^{2} + 24312011328 p^{11} T^{3} + p^{22} T^{4} \)
73$D_{4}$ \( 1 + 30890001932 T + \)\(73\!\cdots\!46\)\( T^{2} + 30890001932 p^{11} T^{3} + p^{22} T^{4} \)
79$D_{4}$ \( 1 - 1992804256 T + \)\(85\!\cdots\!38\)\( T^{2} - 1992804256 p^{11} T^{3} + p^{22} T^{4} \)
83$D_{4}$ \( 1 - 5277014568 T + \)\(22\!\cdots\!46\)\( T^{2} - 5277014568 p^{11} T^{3} + p^{22} T^{4} \)
89$D_{4}$ \( 1 + 101541312828 T + \)\(76\!\cdots\!78\)\( T^{2} + 101541312828 p^{11} T^{3} + p^{22} T^{4} \)
97$D_{4}$ \( 1 + 192228621116 T + \)\(23\!\cdots\!14\)\( T^{2} + 192228621116 p^{11} T^{3} + p^{22} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.16634940148811776685437207745, −18.81276157193396313880207906295, −17.69351713343921008779321530833, −17.44837445569119936302030383152, −16.06868145508675627531740066023, −15.70646079649871382256335496444, −14.87829284700560639909181318743, −14.14395809131426295990184866016, −12.43924517480024763449603333298, −11.82173007109350275080356632240, −11.09305020580375350138968234729, −10.11086410583036607039992074576, −8.440986099086814035453753842598, −8.358865591234548640992149568564, −7.62522232690598032193300036788, −5.77480118422244121392872850335, −3.96073224635113559685749478845, −2.53913838777535488923396680951, 0, 0, 2.53913838777535488923396680951, 3.96073224635113559685749478845, 5.77480118422244121392872850335, 7.62522232690598032193300036788, 8.358865591234548640992149568564, 8.440986099086814035453753842598, 10.11086410583036607039992074576, 11.09305020580375350138968234729, 11.82173007109350275080356632240, 12.43924517480024763449603333298, 14.14395809131426295990184866016, 14.87829284700560639909181318743, 15.70646079649871382256335496444, 16.06868145508675627531740066023, 17.44837445569119936302030383152, 17.69351713343921008779321530833, 18.81276157193396313880207906295, 19.16634940148811776685437207745

Graph of the $Z$-function along the critical line