Properties

Label 4-7938e2-1.1-c1e2-0-1
Degree $4$
Conductor $63011844$
Sign $1$
Analytic cond. $4017.68$
Root an. cond. $7.96148$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·4-s − 4·8-s − 4·13-s + 5·16-s − 4·19-s − 6·23-s − 10·25-s + 8·26-s − 10·31-s − 6·32-s − 8·37-s + 8·38-s + 6·41-s + 4·43-s + 12·46-s + 18·47-s + 20·50-s − 12·52-s − 4·61-s + 20·62-s + 7·64-s − 8·67-s + 6·71-s + 14·73-s + 16·74-s − 12·76-s + ⋯
L(s)  = 1  − 1.41·2-s + 3/2·4-s − 1.41·8-s − 1.10·13-s + 5/4·16-s − 0.917·19-s − 1.25·23-s − 2·25-s + 1.56·26-s − 1.79·31-s − 1.06·32-s − 1.31·37-s + 1.29·38-s + 0.937·41-s + 0.609·43-s + 1.76·46-s + 2.62·47-s + 2.82·50-s − 1.66·52-s − 0.512·61-s + 2.54·62-s + 7/8·64-s − 0.977·67-s + 0.712·71-s + 1.63·73-s + 1.85·74-s − 1.37·76-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 63011844 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 63011844 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(63011844\)    =    \(2^{2} \cdot 3^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(4017.68\)
Root analytic conductor: \(7.96148\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 63011844,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5613636064\)
\(L(\frac12)\) \(\approx\) \(0.5613636064\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
3 \( 1 \)
7 \( 1 \)
good5$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
13$D_{4}$ \( 1 + 4 T + 12 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$D_{4}$ \( 1 + 4 T + 24 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 + 6 T + 37 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 40 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 + 10 T + 69 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
41$D_{4}$ \( 1 - 6 T + 19 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 - 4 T + 18 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 - 18 T + 157 T^{2} - 18 p T^{3} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 88 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$D_{4}$ \( 1 + 4 T + 108 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 8 T + 132 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 - 6 T + 133 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
79$D_{4}$ \( 1 - 10 T + 165 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 24 T + 292 T^{2} - 24 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 - 6 T + 115 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 - 8 T + 138 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.87070715053170823665148824684, −7.58450061834049440058570939850, −7.48209480296337241956066241069, −7.37544337930295583241073886394, −6.56350965543370507049476047150, −6.47065448065658464688099859166, −5.93757854295158494591442772512, −5.85916965054398795580096423075, −5.22960646183362394331565593093, −5.05454375529657728504916044836, −4.39883011103074252443831994009, −3.90771946877330373734870805123, −3.73546583493542228223149707050, −3.34523234861580284639266715671, −2.46375194319894047207926110135, −2.28370946523043075161120171921, −2.04968299535176241420589042651, −1.61775910309022841384645169948, −0.73843678087101198219298018542, −0.29759316981142721311044145931, 0.29759316981142721311044145931, 0.73843678087101198219298018542, 1.61775910309022841384645169948, 2.04968299535176241420589042651, 2.28370946523043075161120171921, 2.46375194319894047207926110135, 3.34523234861580284639266715671, 3.73546583493542228223149707050, 3.90771946877330373734870805123, 4.39883011103074252443831994009, 5.05454375529657728504916044836, 5.22960646183362394331565593093, 5.85916965054398795580096423075, 5.93757854295158494591442772512, 6.47065448065658464688099859166, 6.56350965543370507049476047150, 7.37544337930295583241073886394, 7.48209480296337241956066241069, 7.58450061834049440058570939850, 7.87070715053170823665148824684

Graph of the $Z$-function along the critical line