L(s) = 1 | − 2·5-s + 4·7-s + 2·11-s + 8·19-s + 3·25-s + 4·29-s + 4·31-s − 8·35-s + 4·37-s + 4·41-s + 4·43-s − 8·47-s + 4·53-s − 4·55-s − 12·59-s + 12·61-s − 4·71-s + 8·77-s + 16·79-s − 12·83-s + 4·89-s − 16·95-s + 12·97-s + 20·101-s − 12·107-s − 4·109-s + 4·113-s + ⋯ |
L(s) = 1 | − 0.894·5-s + 1.51·7-s + 0.603·11-s + 1.83·19-s + 3/5·25-s + 0.742·29-s + 0.718·31-s − 1.35·35-s + 0.657·37-s + 0.624·41-s + 0.609·43-s − 1.16·47-s + 0.549·53-s − 0.539·55-s − 1.56·59-s + 1.53·61-s − 0.474·71-s + 0.911·77-s + 1.80·79-s − 1.31·83-s + 0.423·89-s − 1.64·95-s + 1.21·97-s + 1.99·101-s − 1.16·107-s − 0.383·109-s + 0.376·113-s + ⋯ |
Λ(s)=(=(62726400s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(62726400s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
62726400
= 28⋅34⋅52⋅112
|
Sign: |
1
|
Analytic conductor: |
3999.48 |
Root analytic conductor: |
7.95245 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 62726400, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
4.712273754 |
L(21) |
≈ |
4.712273754 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C1 | (1+T)2 |
| 11 | C1 | (1−T)2 |
good | 7 | D4 | 1−4T+16T2−4pT3+p2T4 |
| 13 | C22 | 1+24T2+p2T4 |
| 17 | C22 | 1+16T2+p2T4 |
| 19 | D4 | 1−8T+46T2−8pT3+p2T4 |
| 23 | C22 | 1+38T2+p2T4 |
| 29 | D4 | 1−4T+30T2−4pT3+p2T4 |
| 31 | D4 | 1−4T+58T2−4pT3+p2T4 |
| 37 | D4 | 1−4T+46T2−4pT3+p2T4 |
| 41 | D4 | 1−4T+54T2−4pT3+p2T4 |
| 43 | D4 | 1−4T+40T2−4pT3+p2T4 |
| 47 | D4 | 1+8T+38T2+8pT3+p2T4 |
| 53 | D4 | 1−4T+38T2−4pT3+p2T4 |
| 59 | D4 | 1+12T+146T2+12pT3+p2T4 |
| 61 | D4 | 1−12T+150T2−12pT3+p2T4 |
| 67 | C22 | 1+62T2+p2T4 |
| 71 | D4 | 1+4T+74T2+4pT3+p2T4 |
| 73 | C22 | 1+96T2+p2T4 |
| 79 | D4 | 1−16T+150T2−16pT3+p2T4 |
| 83 | D4 | 1+12T+184T2+12pT3+p2T4 |
| 89 | C2 | (1−2T+pT2)2 |
| 97 | D4 | 1−12T+222T2−12pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.915267519737862949108166486253, −7.84196533970187846806394745874, −7.27455231148917980663780008306, −7.22706338004649759920767944024, −6.62579518065423300431740768651, −6.39122541649336575227585235504, −5.86797783638690144080705637099, −5.57556387930043359208140976744, −4.98992372658770539455532675687, −4.93155828520612439575850495942, −4.39770839082835835666110504710, −4.33628768835155389199481604448, −3.59228961202000058700130130778, −3.47615209050170800935456851052, −2.83488744193346577323784261823, −2.63328086337728497804891513776, −1.72935820272930836841945637350, −1.64536728341114238413282952998, −0.77476658773066623187586469196, −0.75366034043447184966304522189,
0.75366034043447184966304522189, 0.77476658773066623187586469196, 1.64536728341114238413282952998, 1.72935820272930836841945637350, 2.63328086337728497804891513776, 2.83488744193346577323784261823, 3.47615209050170800935456851052, 3.59228961202000058700130130778, 4.33628768835155389199481604448, 4.39770839082835835666110504710, 4.93155828520612439575850495942, 4.98992372658770539455532675687, 5.57556387930043359208140976744, 5.86797783638690144080705637099, 6.39122541649336575227585235504, 6.62579518065423300431740768651, 7.22706338004649759920767944024, 7.27455231148917980663780008306, 7.84196533970187846806394745874, 7.915267519737862949108166486253