Properties

Label 4-790272-1.1-c1e2-0-31
Degree $4$
Conductor $790272$
Sign $-1$
Analytic cond. $50.3884$
Root an. cond. $2.66429$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s + 7-s − 3·9-s + 4·17-s + 6·25-s − 4·35-s − 12·37-s + 4·41-s + 12·45-s + 16·47-s + 49-s − 3·63-s − 16·67-s + 9·81-s + 16·83-s − 16·85-s − 28·89-s + 12·101-s + 12·109-s + 4·119-s + 6·121-s − 4·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + ⋯
L(s)  = 1  − 1.78·5-s + 0.377·7-s − 9-s + 0.970·17-s + 6/5·25-s − 0.676·35-s − 1.97·37-s + 0.624·41-s + 1.78·45-s + 2.33·47-s + 1/7·49-s − 0.377·63-s − 1.95·67-s + 81-s + 1.75·83-s − 1.73·85-s − 2.96·89-s + 1.19·101-s + 1.14·109-s + 0.366·119-s + 6/11·121-s − 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 790272 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 790272 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(790272\)    =    \(2^{8} \cdot 3^{2} \cdot 7^{3}\)
Sign: $-1$
Analytic conductor: \(50.3884\)
Root analytic conductor: \(2.66429\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 790272,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + p T^{2} \)
7$C_1$ \( 1 - T \)
good5$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
17$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \)
19$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
41$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 4 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
71$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
73$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
89$C_2$$\times$$C_2$ \( ( 1 + 12 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.961079184601086706910241253566, −7.67548686778164902541947714763, −7.19238070289366458529053232147, −7.01210736968122329390212627163, −6.04594958296028195383672632634, −5.84527762283557267382239178151, −5.23638822530898309143358550273, −4.78746766862293010735127396082, −4.14883382526167974463210504827, −3.80052781215690022162466567950, −3.26692381730491515376569041297, −2.80939329027092828978550205754, −1.96324645037111540617948433860, −0.933679224635034246966499490286, 0, 0.933679224635034246966499490286, 1.96324645037111540617948433860, 2.80939329027092828978550205754, 3.26692381730491515376569041297, 3.80052781215690022162466567950, 4.14883382526167974463210504827, 4.78746766862293010735127396082, 5.23638822530898309143358550273, 5.84527762283557267382239178151, 6.04594958296028195383672632634, 7.01210736968122329390212627163, 7.19238070289366458529053232147, 7.67548686778164902541947714763, 7.961079184601086706910241253566

Graph of the $Z$-function along the critical line