Properties

Label 4-790272-1.1-c1e2-0-3
Degree $4$
Conductor $790272$
Sign $1$
Analytic cond. $50.3884$
Root an. cond. $2.66429$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s − 3·9-s − 6·25-s − 20·37-s − 8·43-s + 49-s + 3·63-s + 8·67-s + 16·79-s + 9·81-s − 4·109-s + 18·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 22·169-s + 173-s + 6·175-s + 179-s + 181-s + 191-s + ⋯
L(s)  = 1  − 0.377·7-s − 9-s − 6/5·25-s − 3.28·37-s − 1.21·43-s + 1/7·49-s + 0.377·63-s + 0.977·67-s + 1.80·79-s + 81-s − 0.383·109-s + 1.63·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.69·169-s + 0.0760·173-s + 0.453·175-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 790272 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 790272 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(790272\)    =    \(2^{8} \cdot 3^{2} \cdot 7^{3}\)
Sign: $1$
Analytic conductor: \(50.3884\)
Root analytic conductor: \(2.66429\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 790272,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9731565992\)
\(L(\frac12)\) \(\approx\) \(0.9731565992\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + p T^{2} \)
7$C_1$ \( 1 + T \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
53$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
71$C_2^2$ \( 1 + 54 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.318520093241034492752187485709, −7.932490890640259017040889975835, −7.31889487232664202150176371865, −6.82973075610657303473482008761, −6.57298519357064403709684817980, −5.95607811940733869887970138119, −5.47775020285042597024611937971, −5.21952967585355409120375455010, −4.60546158017039386431787614889, −3.88560945795867323173597120921, −3.38155151927446893960663290880, −3.11620721142656796399164240542, −2.15144838817195320164485029899, −1.78023129914992222032550490917, −0.45523053032945900493989038094, 0.45523053032945900493989038094, 1.78023129914992222032550490917, 2.15144838817195320164485029899, 3.11620721142656796399164240542, 3.38155151927446893960663290880, 3.88560945795867323173597120921, 4.60546158017039386431787614889, 5.21952967585355409120375455010, 5.47775020285042597024611937971, 5.95607811940733869887970138119, 6.57298519357064403709684817980, 6.82973075610657303473482008761, 7.31889487232664202150176371865, 7.932490890640259017040889975835, 8.318520093241034492752187485709

Graph of the $Z$-function along the critical line