Properties

Label 4-77e3-1.1-c1e2-0-0
Degree $4$
Conductor $456533$
Sign $1$
Analytic cond. $29.1089$
Root an. cond. $2.32277$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·4-s − 7-s − 5·9-s − 11-s + 8·13-s + 12·16-s + 12·17-s − 4·19-s + 6·23-s − 25-s + 4·28-s + 20·36-s + 22·37-s − 12·41-s + 4·44-s + 49-s − 32·52-s − 12·53-s + 20·61-s + 5·63-s − 32·64-s + 10·67-s − 48·68-s + 18·71-s − 4·73-s + 16·76-s + 77-s + ⋯
L(s)  = 1  − 2·4-s − 0.377·7-s − 5/3·9-s − 0.301·11-s + 2.21·13-s + 3·16-s + 2.91·17-s − 0.917·19-s + 1.25·23-s − 1/5·25-s + 0.755·28-s + 10/3·36-s + 3.61·37-s − 1.87·41-s + 0.603·44-s + 1/7·49-s − 4.43·52-s − 1.64·53-s + 2.56·61-s + 0.629·63-s − 4·64-s + 1.22·67-s − 5.82·68-s + 2.13·71-s − 0.468·73-s + 1.83·76-s + 0.113·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 456533 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 456533 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(456533\)    =    \(7^{3} \cdot 11^{3}\)
Sign: $1$
Analytic conductor: \(29.1089\)
Root analytic conductor: \(2.32277\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 456533,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.099275660\)
\(L(\frac12)\) \(\approx\) \(1.099275660\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad7$C_1$ \( 1 + T \)
11$C_1$ \( 1 + T \)
good2$C_2$ \( ( 1 + p T^{2} )^{2} \)
3$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
5$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 11 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
83$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
97$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.508833833811404945218630536704, −8.196526304421111242297150106130, −8.085327774959512351361821751845, −7.44927930218322722277526119885, −6.46084267575588440942544784885, −5.98016833623442124300848518324, −5.81865396854508245636334597208, −5.22586837194321912962810216772, −4.95929836259470425310107953583, −4.06364144920564711800863579864, −3.61592205748787980286928494613, −3.31516413382692155506861780875, −2.75685822824512438972431635156, −1.19698223664384976616389110079, −0.70813066257818517183339634810, 0.70813066257818517183339634810, 1.19698223664384976616389110079, 2.75685822824512438972431635156, 3.31516413382692155506861780875, 3.61592205748787980286928494613, 4.06364144920564711800863579864, 4.95929836259470425310107953583, 5.22586837194321912962810216772, 5.81865396854508245636334597208, 5.98016833623442124300848518324, 6.46084267575588440942544784885, 7.44927930218322722277526119885, 8.085327774959512351361821751845, 8.196526304421111242297150106130, 8.508833833811404945218630536704

Graph of the $Z$-function along the critical line