Properties

Label 4-768e2-1.1-c1e2-0-43
Degree $4$
Conductor $589824$
Sign $-1$
Analytic cond. $37.6076$
Root an. cond. $2.47639$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 3·9-s − 8·11-s − 4·17-s + 8·19-s − 10·25-s + 4·27-s − 16·33-s + 12·41-s − 8·43-s + 2·49-s − 8·51-s + 16·57-s + 24·59-s − 24·67-s − 12·73-s − 20·75-s + 5·81-s + 8·83-s − 12·89-s − 4·97-s − 24·99-s − 8·107-s − 28·113-s + 26·121-s + 24·123-s + 127-s + ⋯
L(s)  = 1  + 1.15·3-s + 9-s − 2.41·11-s − 0.970·17-s + 1.83·19-s − 2·25-s + 0.769·27-s − 2.78·33-s + 1.87·41-s − 1.21·43-s + 2/7·49-s − 1.12·51-s + 2.11·57-s + 3.12·59-s − 2.93·67-s − 1.40·73-s − 2.30·75-s + 5/9·81-s + 0.878·83-s − 1.27·89-s − 0.406·97-s − 2.41·99-s − 0.773·107-s − 2.63·113-s + 2.36·121-s + 2.16·123-s + 0.0887·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 589824 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 589824 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(589824\)    =    \(2^{16} \cdot 3^{2}\)
Sign: $-1$
Analytic conductor: \(37.6076\)
Root analytic conductor: \(2.47639\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 589824,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 - T )^{2} \)
good5$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.069916096323518080594124819659, −7.84363031960006724677694678337, −7.42165581773296115004203753691, −7.15944714304425705232693435926, −6.43663656032022884828664728498, −5.67206581946498649675335111392, −5.47500942227311527725009815404, −4.95203593728251161575038294540, −4.25300875683489800803673652068, −3.84720863319685552465873529850, −3.10975929333988114178652450581, −2.59900951660796699369904554010, −2.33855546999761743371608352814, −1.39752451983425368394719286578, 0, 1.39752451983425368394719286578, 2.33855546999761743371608352814, 2.59900951660796699369904554010, 3.10975929333988114178652450581, 3.84720863319685552465873529850, 4.25300875683489800803673652068, 4.95203593728251161575038294540, 5.47500942227311527725009815404, 5.67206581946498649675335111392, 6.43663656032022884828664728498, 7.15944714304425705232693435926, 7.42165581773296115004203753691, 7.84363031960006724677694678337, 8.069916096323518080594124819659

Graph of the $Z$-function along the critical line