Properties

Label 4-760e2-1.1-c0e2-0-1
Degree $4$
Conductor $577600$
Sign $1$
Analytic cond. $0.143860$
Root an. cond. $0.615864$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 5-s + 2·7-s − 8-s − 9-s + 10-s − 2·11-s + 2·13-s + 2·14-s − 16-s − 18-s − 19-s − 2·22-s − 23-s + 2·26-s + 2·35-s + 2·37-s − 38-s − 40-s + 41-s − 45-s − 46-s + 2·47-s + 49-s − 53-s − 2·55-s − 2·56-s + ⋯
L(s)  = 1  + 2-s + 5-s + 2·7-s − 8-s − 9-s + 10-s − 2·11-s + 2·13-s + 2·14-s − 16-s − 18-s − 19-s − 2·22-s − 23-s + 2·26-s + 2·35-s + 2·37-s − 38-s − 40-s + 41-s − 45-s − 46-s + 2·47-s + 49-s − 53-s − 2·55-s − 2·56-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 577600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 577600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(577600\)    =    \(2^{6} \cdot 5^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(0.143860\)
Root analytic conductor: \(0.615864\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 577600,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.607498613\)
\(L(\frac12)\) \(\approx\) \(1.607498613\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - T + T^{2} \)
5$C_2$ \( 1 - T + T^{2} \)
19$C_2$ \( 1 + T + T^{2} \)
good3$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
7$C_2$ \( ( 1 - T + T^{2} )^{2} \)
11$C_2$ \( ( 1 + T + T^{2} )^{2} \)
13$C_2$ \( ( 1 - T + T^{2} )^{2} \)
17$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
23$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
29$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
37$C_2$ \( ( 1 - T + T^{2} )^{2} \)
41$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
43$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
47$C_2$ \( ( 1 - T + T^{2} )^{2} \)
53$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
59$C_2$ \( ( 1 + T + T^{2} )^{2} \)
61$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
67$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
71$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
73$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
79$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
89$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
97$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.93485441171755481527707135520, −10.48250121262372326865424083650, −10.06825674519893421042825104863, −9.394745800195968114513699742530, −8.830312691135980401438075322715, −8.727327446560190403340937227162, −8.058704218817334551105236586684, −7.88324086271870167173093584438, −7.59851929498179832566232844072, −6.31742644072130962741723524899, −6.18683273596882901435283575561, −5.74952792046197916440694269206, −5.53957220539833212944099355730, −4.82679929257341686661846767837, −4.60651403833724601930028635338, −4.01744006617182300204703109441, −3.33634997677515689541557517985, −2.40768412127471461183800674231, −2.40058467866563171112762691553, −1.37604636577870496423637973947, 1.37604636577870496423637973947, 2.40058467866563171112762691553, 2.40768412127471461183800674231, 3.33634997677515689541557517985, 4.01744006617182300204703109441, 4.60651403833724601930028635338, 4.82679929257341686661846767837, 5.53957220539833212944099355730, 5.74952792046197916440694269206, 6.18683273596882901435283575561, 6.31742644072130962741723524899, 7.59851929498179832566232844072, 7.88324086271870167173093584438, 8.058704218817334551105236586684, 8.727327446560190403340937227162, 8.830312691135980401438075322715, 9.394745800195968114513699742530, 10.06825674519893421042825104863, 10.48250121262372326865424083650, 10.93485441171755481527707135520

Graph of the $Z$-function along the critical line