Properties

Label 4-75e4-1.1-c1e2-0-6
Degree $4$
Conductor $31640625$
Sign $1$
Analytic cond. $2017.43$
Root an. cond. $6.70192$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2·4-s − 4·7-s + 3·8-s + 6·11-s − 2·13-s + 4·14-s + 16-s + 4·17-s − 6·22-s − 13·23-s + 2·26-s + 8·28-s + 5·29-s + 4·31-s − 2·32-s − 4·34-s − 4·37-s + 21·41-s − 17·43-s − 12·44-s + 13·46-s + 14·47-s − 2·49-s + 4·52-s − 18·53-s − 12·56-s + ⋯
L(s)  = 1  − 0.707·2-s − 4-s − 1.51·7-s + 1.06·8-s + 1.80·11-s − 0.554·13-s + 1.06·14-s + 1/4·16-s + 0.970·17-s − 1.27·22-s − 2.71·23-s + 0.392·26-s + 1.51·28-s + 0.928·29-s + 0.718·31-s − 0.353·32-s − 0.685·34-s − 0.657·37-s + 3.27·41-s − 2.59·43-s − 1.80·44-s + 1.91·46-s + 2.04·47-s − 2/7·49-s + 0.554·52-s − 2.47·53-s − 1.60·56-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 31640625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 31640625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(31640625\)    =    \(3^{4} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(2017.43\)
Root analytic conductor: \(6.70192\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{5625} (1, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 31640625,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2$D_{4}$ \( 1 + T + 3 T^{2} + p T^{3} + p^{2} T^{4} \)
7$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
17$D_{4}$ \( 1 - 4 T + 33 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 7 T^{2} + p^{2} T^{4} \)
23$D_{4}$ \( 1 + 13 T + 87 T^{2} + 13 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 - 5 T + 63 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 - 4 T + 21 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
41$C_4$ \( 1 - 21 T + 191 T^{2} - 21 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 17 T + 157 T^{2} + 17 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 - 14 T + 138 T^{2} - 14 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 + 18 T + 182 T^{2} + 18 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 10 T + 63 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 - 4 T + 81 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 4 T + 13 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 + 9 T + 131 T^{2} + 9 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 - 18 T + 182 T^{2} - 18 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 + 25 T + 303 T^{2} + 25 p T^{3} + p^{2} T^{4} \)
83$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
89$C_2^2$ \( 1 + 53 T^{2} + p^{2} T^{4} \)
97$D_{4}$ \( 1 - T + 183 T^{2} - p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.058761387913769390759206754715, −7.75574510743999089354799921660, −7.18944872473669821507225983523, −7.02153086636121786566493303414, −6.45184662222692698774381120346, −6.16140025949265467011638416969, −5.97871628363432092026064896772, −5.64670458012498577193518659701, −4.84624068738795639397808224097, −4.68400757169133059369707768368, −4.14178004347461465395548155382, −3.93205671171735489237269264874, −3.54728059228494985462628079567, −3.14195708488296106043979789671, −2.56768649451905884485716367257, −2.08136400647833211258189485686, −1.22155713237536775014526789573, −1.09820080009033362205797219087, 0, 0, 1.09820080009033362205797219087, 1.22155713237536775014526789573, 2.08136400647833211258189485686, 2.56768649451905884485716367257, 3.14195708488296106043979789671, 3.54728059228494985462628079567, 3.93205671171735489237269264874, 4.14178004347461465395548155382, 4.68400757169133059369707768368, 4.84624068738795639397808224097, 5.64670458012498577193518659701, 5.97871628363432092026064896772, 6.16140025949265467011638416969, 6.45184662222692698774381120346, 7.02153086636121786566493303414, 7.18944872473669821507225983523, 7.75574510743999089354799921660, 8.058761387913769390759206754715

Graph of the $Z$-function along the critical line