Properties

Label 4-75e2-1.1-c9e2-0-5
Degree $4$
Conductor $5625$
Sign $1$
Analytic cond. $1492.09$
Root an. cond. $6.21511$
Motivic weight $9$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 19·2-s − 162·3-s + 429·4-s + 3.07e3·6-s + 1.18e4·7-s − 1.91e4·8-s + 1.96e4·9-s + 3.54e4·11-s − 6.94e4·12-s − 1.43e5·13-s − 2.25e5·14-s + 3.16e5·16-s − 3.85e5·17-s − 3.73e5·18-s − 4.03e5·19-s − 1.92e6·21-s − 6.74e5·22-s − 2.23e5·23-s + 3.10e6·24-s + 2.72e6·26-s − 2.12e6·27-s + 5.09e6·28-s − 7.45e4·29-s − 5.02e6·31-s − 6.50e6·32-s − 5.74e6·33-s + 7.31e6·34-s + ⋯
L(s)  = 1  − 0.839·2-s − 1.15·3-s + 0.837·4-s + 0.969·6-s + 1.86·7-s − 1.65·8-s + 9-s + 0.730·11-s − 0.967·12-s − 1.39·13-s − 1.56·14-s + 1.20·16-s − 1.11·17-s − 0.839·18-s − 0.709·19-s − 2.15·21-s − 0.613·22-s − 0.166·23-s + 1.91·24-s + 1.17·26-s − 0.769·27-s + 1.56·28-s − 0.0195·29-s − 0.977·31-s − 1.09·32-s − 0.843·33-s + 0.939·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5625 ^{s/2} \, \Gamma_{\C}(s+9/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(5625\)    =    \(3^{2} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(1492.09\)
Root analytic conductor: \(6.21511\)
Motivic weight: \(9\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 5625,\ (\ :9/2, 9/2),\ 1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 + p^{4} T )^{2} \)
5 \( 1 \)
good2$D_{4}$ \( 1 + 19 T - 17 p^{2} T^{2} + 19 p^{9} T^{3} + p^{18} T^{4} \)
7$D_{4}$ \( 1 - 1696 p T + 327218 p^{3} T^{2} - 1696 p^{10} T^{3} + p^{18} T^{4} \)
11$D_{4}$ \( 1 - 35488 T + 526013014 T^{2} - 35488 p^{9} T^{3} + p^{18} T^{4} \)
13$D_{4}$ \( 1 + 11052 p T + 24105149134 T^{2} + 11052 p^{10} T^{3} + p^{18} T^{4} \)
17$D_{4}$ \( 1 + 385156 T + 268539949078 T^{2} + 385156 p^{9} T^{3} + p^{18} T^{4} \)
19$D_{4}$ \( 1 + 403296 T + 684929514838 T^{2} + 403296 p^{9} T^{3} + p^{18} T^{4} \)
23$D_{4}$ \( 1 + 223704 T - 1375273107794 T^{2} + 223704 p^{9} T^{3} + p^{18} T^{4} \)
29$D_{4}$ \( 1 + 74572 T + 28833430018078 T^{2} + 74572 p^{9} T^{3} + p^{18} T^{4} \)
31$D_{4}$ \( 1 + 5027128 T + 52415931233342 T^{2} + 5027128 p^{9} T^{3} + p^{18} T^{4} \)
37$D_{4}$ \( 1 + 5373628 T + 231061724951934 T^{2} + 5373628 p^{9} T^{3} + p^{18} T^{4} \)
41$D_{4}$ \( 1 - 14211332 T + 443988635955862 T^{2} - 14211332 p^{9} T^{3} + p^{18} T^{4} \)
43$D_{4}$ \( 1 + 27748920 T + 1170232974699430 T^{2} + 27748920 p^{9} T^{3} + p^{18} T^{4} \)
47$D_{4}$ \( 1 + 95966440 T + 4320659216802910 T^{2} + 95966440 p^{9} T^{3} + p^{18} T^{4} \)
53$D_{4}$ \( 1 - 64305596 T + 6611083028543086 T^{2} - 64305596 p^{9} T^{3} + p^{18} T^{4} \)
59$D_{4}$ \( 1 - 187863136 T + 23071633420288438 T^{2} - 187863136 p^{9} T^{3} + p^{18} T^{4} \)
61$D_{4}$ \( 1 - 154080060 T + 23302683905802238 T^{2} - 154080060 p^{9} T^{3} + p^{18} T^{4} \)
67$D_{4}$ \( 1 + 33592376 T - 10819815556424362 T^{2} + 33592376 p^{9} T^{3} + p^{18} T^{4} \)
71$D_{4}$ \( 1 + 228270976 T + 45777616900481806 T^{2} + 228270976 p^{9} T^{3} + p^{18} T^{4} \)
73$D_{4}$ \( 1 - 33122316 T + 68371107952007926 T^{2} - 33122316 p^{9} T^{3} + p^{18} T^{4} \)
79$D_{4}$ \( 1 + 932406760 T + 453226630902929438 T^{2} + 932406760 p^{9} T^{3} + p^{18} T^{4} \)
83$D_{4}$ \( 1 + 207040152 T + 372783310330485238 T^{2} + 207040152 p^{9} T^{3} + p^{18} T^{4} \)
89$D_{4}$ \( 1 - 2522676 p T + 610925899926766678 T^{2} - 2522676 p^{10} T^{3} + p^{18} T^{4} \)
97$D_{4}$ \( 1 + 387134596 T - 734969029248610362 T^{2} + 387134596 p^{9} T^{3} + p^{18} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.98248971273409588617552340247, −11.65219751052240772245654576341, −11.31076411308324809241937054834, −11.01887205017104809519184776521, −9.977751454908935964891837066439, −9.875390233448212903863590403839, −8.730541396357450960022706104696, −8.616111132050934695687104718153, −7.75553495451413298600404374125, −6.99051637491127615614604873264, −6.69145548571116019382817309832, −5.88069703652180196630828963952, −5.13173395003014349065917905672, −4.70012198013035439341221857504, −3.81008043728244939869250272631, −2.47758048731764178809166918022, −1.87181347393320650828495340716, −1.25774947916263775721049213561, 0, 0, 1.25774947916263775721049213561, 1.87181347393320650828495340716, 2.47758048731764178809166918022, 3.81008043728244939869250272631, 4.70012198013035439341221857504, 5.13173395003014349065917905672, 5.88069703652180196630828963952, 6.69145548571116019382817309832, 6.99051637491127615614604873264, 7.75553495451413298600404374125, 8.616111132050934695687104718153, 8.730541396357450960022706104696, 9.875390233448212903863590403839, 9.977751454908935964891837066439, 11.01887205017104809519184776521, 11.31076411308324809241937054834, 11.65219751052240772245654576341, 11.98248971273409588617552340247

Graph of the $Z$-function along the critical line