Properties

Label 4-7488e2-1.1-c1e2-0-15
Degree $4$
Conductor $56070144$
Sign $1$
Analytic cond. $3575.08$
Root an. cond. $7.73252$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s + 3·7-s + 4·11-s + 2·13-s − 3·17-s − 12·19-s + 25-s + 6·31-s − 9·35-s + 7·37-s − 6·41-s − 3·43-s + 9·47-s − 3·49-s − 18·53-s − 12·55-s − 12·59-s − 2·61-s − 6·65-s − 12·67-s − 9·71-s + 20·73-s + 12·77-s + 24·79-s − 10·83-s + 9·85-s + 6·91-s + ⋯
L(s)  = 1  − 1.34·5-s + 1.13·7-s + 1.20·11-s + 0.554·13-s − 0.727·17-s − 2.75·19-s + 1/5·25-s + 1.07·31-s − 1.52·35-s + 1.15·37-s − 0.937·41-s − 0.457·43-s + 1.31·47-s − 3/7·49-s − 2.47·53-s − 1.61·55-s − 1.56·59-s − 0.256·61-s − 0.744·65-s − 1.46·67-s − 1.06·71-s + 2.34·73-s + 1.36·77-s + 2.70·79-s − 1.09·83-s + 0.976·85-s + 0.628·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 56070144 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 56070144 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(56070144\)    =    \(2^{12} \cdot 3^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(3575.08\)
Root analytic conductor: \(7.73252\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 56070144,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13$C_1$ \( ( 1 - T )^{2} \)
good5$C_2^2$ \( 1 + 3 T + 8 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
7$D_{4}$ \( 1 - 3 T + 12 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
17$D_{4}$ \( 1 + 3 T + 32 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
31$D_{4}$ \( 1 - 6 T + 54 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 - 7 T + 48 T^{2} - 7 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 + 6 T + 74 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 3 T - 18 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 - 9 T + 76 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 + 18 T + 170 T^{2} + 18 p T^{3} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
61$D_{4}$ \( 1 + 2 T - 30 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
71$D_{4}$ \( 1 + 9 T + 124 T^{2} + 9 p T^{3} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
83$D_{4}$ \( 1 + 10 T + 38 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 110 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.72094241232081977650438220022, −7.70780230892393800680692613034, −6.84183841404954672785359877157, −6.61281408280301419881473003117, −6.41271512730125236255735154944, −6.26151843122698450260910629957, −5.59396507919488738155589650106, −5.18100658843356690000311929060, −4.54646553995832739439507953528, −4.47087145005024048048879342982, −4.17737711598404645504832062210, −4.02941976587680069192120515041, −3.29507607954844955381963802382, −3.13938350290223621990433141581, −2.19700950997448984117901349121, −2.18857996435631769302187881544, −1.36065443931923485091698259288, −1.21867796196456251070705972321, 0, 0, 1.21867796196456251070705972321, 1.36065443931923485091698259288, 2.18857996435631769302187881544, 2.19700950997448984117901349121, 3.13938350290223621990433141581, 3.29507607954844955381963802382, 4.02941976587680069192120515041, 4.17737711598404645504832062210, 4.47087145005024048048879342982, 4.54646553995832739439507953528, 5.18100658843356690000311929060, 5.59396507919488738155589650106, 6.26151843122698450260910629957, 6.41271512730125236255735154944, 6.61281408280301419881473003117, 6.84183841404954672785359877157, 7.70780230892393800680692613034, 7.72094241232081977650438220022

Graph of the $Z$-function along the critical line