L(s) = 1 | − 3·5-s + 3·7-s + 4·11-s + 2·13-s − 3·17-s − 12·19-s + 25-s + 6·31-s − 9·35-s + 7·37-s − 6·41-s − 3·43-s + 9·47-s − 3·49-s − 18·53-s − 12·55-s − 12·59-s − 2·61-s − 6·65-s − 12·67-s − 9·71-s + 20·73-s + 12·77-s + 24·79-s − 10·83-s + 9·85-s + 6·91-s + ⋯ |
L(s) = 1 | − 1.34·5-s + 1.13·7-s + 1.20·11-s + 0.554·13-s − 0.727·17-s − 2.75·19-s + 1/5·25-s + 1.07·31-s − 1.52·35-s + 1.15·37-s − 0.937·41-s − 0.457·43-s + 1.31·47-s − 3/7·49-s − 2.47·53-s − 1.61·55-s − 1.56·59-s − 0.256·61-s − 0.744·65-s − 1.46·67-s − 1.06·71-s + 2.34·73-s + 1.36·77-s + 2.70·79-s − 1.09·83-s + 0.976·85-s + 0.628·91-s + ⋯ |
Λ(s)=(=(56070144s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(56070144s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
56070144
= 212⋅34⋅132
|
Sign: |
1
|
Analytic conductor: |
3575.08 |
Root analytic conductor: |
7.73252 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 56070144, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 13 | C1 | (1−T)2 |
good | 5 | C22 | 1+3T+8T2+3pT3+p2T4 |
| 7 | D4 | 1−3T+12T2−3pT3+p2T4 |
| 11 | C2 | (1−2T+pT2)2 |
| 17 | D4 | 1+3T+32T2+3pT3+p2T4 |
| 19 | C2 | (1+6T+pT2)2 |
| 23 | C2 | (1+pT2)2 |
| 29 | C22 | 1−10T2+p2T4 |
| 31 | D4 | 1−6T+54T2−6pT3+p2T4 |
| 37 | D4 | 1−7T+48T2−7pT3+p2T4 |
| 41 | D4 | 1+6T+74T2+6pT3+p2T4 |
| 43 | D4 | 1+3T−18T2+3pT3+p2T4 |
| 47 | D4 | 1−9T+76T2−9pT3+p2T4 |
| 53 | D4 | 1+18T+170T2+18pT3+p2T4 |
| 59 | C2 | (1+6T+pT2)2 |
| 61 | D4 | 1+2T−30T2+2pT3+p2T4 |
| 67 | C2 | (1+6T+pT2)2 |
| 71 | D4 | 1+9T+124T2+9pT3+p2T4 |
| 73 | C2 | (1−10T+pT2)2 |
| 79 | C2 | (1−12T+pT2)2 |
| 83 | D4 | 1+10T+38T2+10pT3+p2T4 |
| 89 | C22 | 1+110T2+p2T4 |
| 97 | C2 | (1+6T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.72094241232081977650438220022, −7.70780230892393800680692613034, −6.84183841404954672785359877157, −6.61281408280301419881473003117, −6.41271512730125236255735154944, −6.26151843122698450260910629957, −5.59396507919488738155589650106, −5.18100658843356690000311929060, −4.54646553995832739439507953528, −4.47087145005024048048879342982, −4.17737711598404645504832062210, −4.02941976587680069192120515041, −3.29507607954844955381963802382, −3.13938350290223621990433141581, −2.19700950997448984117901349121, −2.18857996435631769302187881544, −1.36065443931923485091698259288, −1.21867796196456251070705972321, 0, 0,
1.21867796196456251070705972321, 1.36065443931923485091698259288, 2.18857996435631769302187881544, 2.19700950997448984117901349121, 3.13938350290223621990433141581, 3.29507607954844955381963802382, 4.02941976587680069192120515041, 4.17737711598404645504832062210, 4.47087145005024048048879342982, 4.54646553995832739439507953528, 5.18100658843356690000311929060, 5.59396507919488738155589650106, 6.26151843122698450260910629957, 6.41271512730125236255735154944, 6.61281408280301419881473003117, 6.84183841404954672785359877157, 7.70780230892393800680692613034, 7.72094241232081977650438220022