Properties

Label 4-740772-1.1-c1e2-0-6
Degree $4$
Conductor $740772$
Sign $-1$
Analytic cond. $47.2322$
Root an. cond. $2.62155$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3-s + 3·4-s + 2·6-s − 7-s − 4·8-s + 9-s − 3·12-s + 2·14-s + 5·16-s − 2·18-s + 19-s + 21-s + 4·24-s − 25-s − 27-s − 3·28-s − 3·29-s − 6·32-s + 3·36-s − 2·38-s − 7·41-s − 2·42-s + 21·43-s − 5·48-s + 7·49-s + 2·50-s + ⋯
L(s)  = 1  − 1.41·2-s − 0.577·3-s + 3/2·4-s + 0.816·6-s − 0.377·7-s − 1.41·8-s + 1/3·9-s − 0.866·12-s + 0.534·14-s + 5/4·16-s − 0.471·18-s + 0.229·19-s + 0.218·21-s + 0.816·24-s − 1/5·25-s − 0.192·27-s − 0.566·28-s − 0.557·29-s − 1.06·32-s + 1/2·36-s − 0.324·38-s − 1.09·41-s − 0.308·42-s + 3.20·43-s − 0.721·48-s + 49-s + 0.282·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 740772 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 740772 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(740772\)    =    \(2^{2} \cdot 3^{3} \cdot 19^{3}\)
Sign: $-1$
Analytic conductor: \(47.2322\)
Root analytic conductor: \(2.62155\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 740772,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
3$C_1$ \( 1 + T \)
19$C_1$ \( 1 - T \)
good5$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
23$C_2^2$ \( 1 + 24 T^{2} + p^{2} T^{4} \)
29$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 37 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
43$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 9 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 42 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 5 T + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 + 8 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
61$C_2$$\times$$C_2$ \( ( 1 + 7 T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
67$C_2^2$ \( 1 - 37 T^{2} + p^{2} T^{4} \)
71$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
79$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
89$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
97$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.971928342399811309163318807084, −7.62868107527512125816999512601, −7.24220719551039278709773228254, −6.99865747244675636948707533342, −6.16950388608483140401582108277, −6.01587866574363804000610737608, −5.63566384072871502776791896481, −4.88563645686008619088412658614, −4.29669999870322491857344366053, −3.71427870031577119124347696256, −2.99968482472843462267367609241, −2.46791734516640255667590875092, −1.69488119140584468940391369752, −0.970526032334489028665696583589, 0, 0.970526032334489028665696583589, 1.69488119140584468940391369752, 2.46791734516640255667590875092, 2.99968482472843462267367609241, 3.71427870031577119124347696256, 4.29669999870322491857344366053, 4.88563645686008619088412658614, 5.63566384072871502776791896481, 6.01587866574363804000610737608, 6.16950388608483140401582108277, 6.99865747244675636948707533342, 7.24220719551039278709773228254, 7.62868107527512125816999512601, 7.971928342399811309163318807084

Graph of the $Z$-function along the critical line