Properties

Label 4-740772-1.1-c1e2-0-5
Degree $4$
Conductor $740772$
Sign $1$
Analytic cond. $47.2322$
Root an. cond. $2.62155$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 3-s + 3·4-s − 2·6-s + 4·8-s + 9-s − 3·12-s + 5·16-s + 2·18-s − 19-s − 4·24-s + 3·25-s − 27-s + 5·29-s + 6·32-s + 3·36-s − 2·38-s − 7·41-s − 43-s − 5·48-s − 5·49-s + 6·50-s + 25·53-s − 2·54-s + 57-s + 10·58-s − 3·59-s + ⋯
L(s)  = 1  + 1.41·2-s − 0.577·3-s + 3/2·4-s − 0.816·6-s + 1.41·8-s + 1/3·9-s − 0.866·12-s + 5/4·16-s + 0.471·18-s − 0.229·19-s − 0.816·24-s + 3/5·25-s − 0.192·27-s + 0.928·29-s + 1.06·32-s + 1/2·36-s − 0.324·38-s − 1.09·41-s − 0.152·43-s − 0.721·48-s − 5/7·49-s + 0.848·50-s + 3.43·53-s − 0.272·54-s + 0.132·57-s + 1.31·58-s − 0.390·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 740772 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 740772 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(740772\)    =    \(2^{2} \cdot 3^{3} \cdot 19^{3}\)
Sign: $1$
Analytic conductor: \(47.2322\)
Root analytic conductor: \(2.62155\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 740772,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.299880458\)
\(L(\frac12)\) \(\approx\) \(4.299880458\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{2} \)
3$C_1$ \( 1 + T \)
19$C_1$ \( 1 + T \)
good5$C_2^2$ \( 1 - 3 T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
13$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
29$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 - T + p T^{2} ) \)
31$C_2^2$ \( 1 + 28 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 17 T^{2} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
43$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 48 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 - 11 T + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
61$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \)
79$C_2^2$ \( 1 - 110 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 139 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \)
97$C_2^2$ \( 1 + 112 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.361265672128935441811174080999, −7.48859481061686387107035219065, −7.30587353278051202258048014272, −6.70767582860030222237756821121, −6.48686802846743604621087881709, −5.92373873817053490306710474889, −5.45957676511972144815075201256, −5.11024117639995378664900312487, −4.58928450255563018818355364692, −4.18068823964036723605526602796, −3.62024639011733655369904103227, −3.06659408609913902153102982556, −2.44956854690341153540879083012, −1.79338212263893682557521333205, −0.855990091492211522246527594829, 0.855990091492211522246527594829, 1.79338212263893682557521333205, 2.44956854690341153540879083012, 3.06659408609913902153102982556, 3.62024639011733655369904103227, 4.18068823964036723605526602796, 4.58928450255563018818355364692, 5.11024117639995378664900312487, 5.45957676511972144815075201256, 5.92373873817053490306710474889, 6.48686802846743604621087881709, 6.70767582860030222237756821121, 7.30587353278051202258048014272, 7.48859481061686387107035219065, 8.361265672128935441811174080999

Graph of the $Z$-function along the critical line