Properties

Label 4-740772-1.1-c1e2-0-2
Degree $4$
Conductor $740772$
Sign $1$
Analytic cond. $47.2322$
Root an. cond. $2.62155$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3-s + 3·4-s + 2·6-s − 8·7-s + 4·8-s + 9-s + 3·12-s − 16·14-s + 5·16-s + 2·18-s + 19-s − 8·21-s + 4·24-s − 10·25-s + 27-s − 24·28-s + 12·29-s + 6·32-s + 3·36-s + 2·38-s + 12·41-s − 16·42-s − 8·43-s + 5·48-s + 34·49-s − 20·50-s + ⋯
L(s)  = 1  + 1.41·2-s + 0.577·3-s + 3/2·4-s + 0.816·6-s − 3.02·7-s + 1.41·8-s + 1/3·9-s + 0.866·12-s − 4.27·14-s + 5/4·16-s + 0.471·18-s + 0.229·19-s − 1.74·21-s + 0.816·24-s − 2·25-s + 0.192·27-s − 4.53·28-s + 2.22·29-s + 1.06·32-s + 1/2·36-s + 0.324·38-s + 1.87·41-s − 2.46·42-s − 1.21·43-s + 0.721·48-s + 34/7·49-s − 2.82·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 740772 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 740772 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(740772\)    =    \(2^{2} \cdot 3^{3} \cdot 19^{3}\)
Sign: $1$
Analytic conductor: \(47.2322\)
Root analytic conductor: \(2.62155\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 740772,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.939975182\)
\(L(\frac12)\) \(\approx\) \(3.939975182\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{2} \)
3$C_1$ \( 1 - T \)
19$C_1$ \( 1 - T \)
good5$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.973335490421157373200340268575, −7.925829293225301888815721725055, −6.99837814009346807055419707757, −6.84732233829542762166868447522, −6.42175065357863112940503564387, −6.12675690767575714012805518157, −5.61719283222003359694793802526, −5.14068748782158926311502727689, −4.29749409703075547029747073938, −3.89674503164637365373404147869, −3.59181615458709107113938050056, −2.96208378701890094056085403451, −2.72251484544452322835217288408, −2.07946028055705897214797931842, −0.71601333078884782271989244339, 0.71601333078884782271989244339, 2.07946028055705897214797931842, 2.72251484544452322835217288408, 2.96208378701890094056085403451, 3.59181615458709107113938050056, 3.89674503164637365373404147869, 4.29749409703075547029747073938, 5.14068748782158926311502727689, 5.61719283222003359694793802526, 6.12675690767575714012805518157, 6.42175065357863112940503564387, 6.84732233829542762166868447522, 6.99837814009346807055419707757, 7.925829293225301888815721725055, 7.973335490421157373200340268575

Graph of the $Z$-function along the critical line