Properties

Label 4-740772-1.1-c1e2-0-14
Degree $4$
Conductor $740772$
Sign $-1$
Analytic cond. $47.2322$
Root an. cond. $2.62155$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3-s + 3·4-s + 2·6-s + 8·7-s − 4·8-s + 9-s − 3·12-s − 16·14-s + 5·16-s − 2·18-s + 19-s − 8·21-s + 4·24-s − 10·25-s − 27-s + 24·28-s − 12·29-s − 6·32-s + 3·36-s − 2·38-s + 20·41-s + 16·42-s − 24·43-s − 5·48-s + 34·49-s + 20·50-s + ⋯
L(s)  = 1  − 1.41·2-s − 0.577·3-s + 3/2·4-s + 0.816·6-s + 3.02·7-s − 1.41·8-s + 1/3·9-s − 0.866·12-s − 4.27·14-s + 5/4·16-s − 0.471·18-s + 0.229·19-s − 1.74·21-s + 0.816·24-s − 2·25-s − 0.192·27-s + 4.53·28-s − 2.22·29-s − 1.06·32-s + 1/2·36-s − 0.324·38-s + 3.12·41-s + 2.46·42-s − 3.65·43-s − 0.721·48-s + 34/7·49-s + 2.82·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 740772 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 740772 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(740772\)    =    \(2^{2} \cdot 3^{3} \cdot 19^{3}\)
Sign: $-1$
Analytic conductor: \(47.2322\)
Root analytic conductor: \(2.62155\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 740772,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
3$C_1$ \( 1 + T \)
19$C_1$ \( 1 - T \)
good5$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 16 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.202695186334477258022172533134, −7.64198238847393687882301889209, −7.47467831026680190924032557177, −7.09437019996928771238631970369, −6.23458925972747170402160537885, −5.74836164136915456195765077676, −5.47887733490393183920061047135, −4.96168584606520975721850935075, −4.27018118796272972112253469343, −4.03302788649080589834097790219, −2.97436876920201446806047330172, −2.06463630287918479320818570303, −1.65254561433729232279648150469, −1.37257859192148604205877773155, 0, 1.37257859192148604205877773155, 1.65254561433729232279648150469, 2.06463630287918479320818570303, 2.97436876920201446806047330172, 4.03302788649080589834097790219, 4.27018118796272972112253469343, 4.96168584606520975721850935075, 5.47887733490393183920061047135, 5.74836164136915456195765077676, 6.23458925972747170402160537885, 7.09437019996928771238631970369, 7.47467831026680190924032557177, 7.64198238847393687882301889209, 8.202695186334477258022172533134

Graph of the $Z$-function along the critical line