Properties

Label 4-740772-1.1-c1e2-0-13
Degree $4$
Conductor $740772$
Sign $-1$
Analytic cond. $47.2322$
Root an. cond. $2.62155$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 3-s + 3·4-s − 2·6-s − 5·7-s + 4·8-s + 9-s − 3·12-s − 10·14-s + 5·16-s + 2·18-s + 19-s + 5·21-s − 4·24-s − 25-s − 27-s − 15·28-s + 3·29-s + 6·32-s + 3·36-s + 2·38-s − 9·41-s + 10·42-s + 43-s − 5·48-s + 7·49-s − 2·50-s + ⋯
L(s)  = 1  + 1.41·2-s − 0.577·3-s + 3/2·4-s − 0.816·6-s − 1.88·7-s + 1.41·8-s + 1/3·9-s − 0.866·12-s − 2.67·14-s + 5/4·16-s + 0.471·18-s + 0.229·19-s + 1.09·21-s − 0.816·24-s − 1/5·25-s − 0.192·27-s − 2.83·28-s + 0.557·29-s + 1.06·32-s + 1/2·36-s + 0.324·38-s − 1.40·41-s + 1.54·42-s + 0.152·43-s − 0.721·48-s + 49-s − 0.282·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 740772 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 740772 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(740772\)    =    \(2^{2} \cdot 3^{3} \cdot 19^{3}\)
Sign: $-1$
Analytic conductor: \(47.2322\)
Root analytic conductor: \(2.62155\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 740772,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{2} \)
3$C_1$ \( 1 + T \)
19$C_1$ \( 1 - T \)
good5$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
7$C_2$ \( ( 1 + T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 13 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
29$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 17 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 56 T^{2} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 + 3 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 9 T + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + p T^{2} ) \)
61$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
67$C_2^2$ \( 1 + 91 T^{2} + p^{2} T^{4} \)
71$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 - 3 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 86 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
97$C_2^2$ \( 1 - 140 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.895066880100714880010765073895, −7.37537050598211728364108602982, −6.79640354020912834681147009410, −6.65100909763992877932040013392, −6.16797338103572917911190248799, −5.93044412064917709044791732692, −5.16664875685110970250235628594, −5.00645295207967492451438634426, −4.29167327291336855211580789425, −3.73710485726989622889330712148, −3.34819909146828873634094986391, −2.89950449016663250242264949545, −2.23325747212457775082930091172, −1.28939472445932661570251507677, 0, 1.28939472445932661570251507677, 2.23325747212457775082930091172, 2.89950449016663250242264949545, 3.34819909146828873634094986391, 3.73710485726989622889330712148, 4.29167327291336855211580789425, 5.00645295207967492451438634426, 5.16664875685110970250235628594, 5.93044412064917709044791732692, 6.16797338103572917911190248799, 6.65100909763992877932040013392, 6.79640354020912834681147009410, 7.37537050598211728364108602982, 7.895066880100714880010765073895

Graph of the $Z$-function along the critical line