Properties

Label 4-740772-1.1-c1e2-0-11
Degree $4$
Conductor $740772$
Sign $-1$
Analytic cond. $47.2322$
Root an. cond. $2.62155$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3-s + 3·4-s − 2·6-s − 4·8-s + 9-s + 3·12-s + 5·16-s − 2·18-s − 19-s − 4·24-s + 3·25-s + 27-s − 5·29-s − 6·32-s + 3·36-s + 2·38-s + 7·41-s − 43-s + 5·48-s − 5·49-s − 6·50-s − 25·53-s − 2·54-s − 57-s + 10·58-s + 3·59-s + ⋯
L(s)  = 1  − 1.41·2-s + 0.577·3-s + 3/2·4-s − 0.816·6-s − 1.41·8-s + 1/3·9-s + 0.866·12-s + 5/4·16-s − 0.471·18-s − 0.229·19-s − 0.816·24-s + 3/5·25-s + 0.192·27-s − 0.928·29-s − 1.06·32-s + 1/2·36-s + 0.324·38-s + 1.09·41-s − 0.152·43-s + 0.721·48-s − 5/7·49-s − 0.848·50-s − 3.43·53-s − 0.272·54-s − 0.132·57-s + 1.31·58-s + 0.390·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 740772 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 740772 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(740772\)    =    \(2^{2} \cdot 3^{3} \cdot 19^{3}\)
Sign: $-1$
Analytic conductor: \(47.2322\)
Root analytic conductor: \(2.62155\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 740772,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
3$C_1$ \( 1 - T \)
19$C_1$ \( 1 + T \)
good5$C_2^2$ \( 1 - 3 T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
13$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
29$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
31$C_2^2$ \( 1 + 28 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 17 T^{2} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
43$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 48 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 + 11 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
61$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \)
79$C_2^2$ \( 1 - 110 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 139 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2^2$ \( 1 + 112 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.230247022199406506458314543070, −7.70448810423057161566656504945, −7.39431735259013957516833938172, −6.88079171131385486535826064688, −6.45721627168504731854771604291, −6.03267634618817585971741043189, −5.42726382874489677927526159971, −4.83597441096562558631379203845, −4.22195688919300391079583105271, −3.56825199163943836512869689869, −3.01619245724457508796785815738, −2.49187387919429110945340212541, −1.78717509160425731969564298014, −1.19986383983822357853496417162, 0, 1.19986383983822357853496417162, 1.78717509160425731969564298014, 2.49187387919429110945340212541, 3.01619245724457508796785815738, 3.56825199163943836512869689869, 4.22195688919300391079583105271, 4.83597441096562558631379203845, 5.42726382874489677927526159971, 6.03267634618817585971741043189, 6.45721627168504731854771604291, 6.88079171131385486535826064688, 7.39431735259013957516833938172, 7.70448810423057161566656504945, 8.230247022199406506458314543070

Graph of the $Z$-function along the critical line