Properties

Label 4-740772-1.1-c1e2-0-10
Degree $4$
Conductor $740772$
Sign $1$
Analytic cond. $47.2322$
Root an. cond. $2.62155$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4-s + 7·7-s + 9-s + 12-s − 2·13-s + 16-s + 19-s + 7·21-s + 8·25-s + 27-s + 7·28-s + 10·31-s + 36-s − 2·37-s − 2·39-s − 11·43-s + 48-s + 25·49-s − 2·52-s + 57-s + 16·61-s + 7·63-s + 64-s − 5·67-s − 2·73-s + 8·75-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/2·4-s + 2.64·7-s + 1/3·9-s + 0.288·12-s − 0.554·13-s + 1/4·16-s + 0.229·19-s + 1.52·21-s + 8/5·25-s + 0.192·27-s + 1.32·28-s + 1.79·31-s + 1/6·36-s − 0.328·37-s − 0.320·39-s − 1.67·43-s + 0.144·48-s + 25/7·49-s − 0.277·52-s + 0.132·57-s + 2.04·61-s + 0.881·63-s + 1/8·64-s − 0.610·67-s − 0.234·73-s + 0.923·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 740772 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 740772 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(740772\)    =    \(2^{2} \cdot 3^{3} \cdot 19^{3}\)
Sign: $1$
Analytic conductor: \(47.2322\)
Root analytic conductor: \(2.62155\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 740772,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.437258113\)
\(L(\frac12)\) \(\approx\) \(4.437258113\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
3$C_1$ \( 1 - T \)
19$C_1$ \( 1 - T \)
good5$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
7$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
13$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
17$C_2^2$ \( 1 - 20 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 17 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
31$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
37$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 64 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 53 T^{2} + p^{2} T^{4} \)
61$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
67$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
71$C_2^2$ \( 1 - 119 T^{2} + p^{2} T^{4} \)
73$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
79$C_2$ \( ( 1 + 16 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 58 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 128 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.198649989471353669686261061004, −8.112627193890949061808269468339, −7.34702615440567392596857320571, −7.11770500842890259526047007230, −6.73632075155858562443002999867, −5.97398016747507603353200514102, −5.39852558347754735104108081797, −4.94700711009357496864534098698, −4.64385789642771307621757561964, −4.26099745037811799152779132633, −3.40975102119229741386823549698, −2.74397258160590768831714217525, −2.31190807247247946579923890637, −1.53690578454560135712324081179, −1.17228886242971314309990552812, 1.17228886242971314309990552812, 1.53690578454560135712324081179, 2.31190807247247946579923890637, 2.74397258160590768831714217525, 3.40975102119229741386823549698, 4.26099745037811799152779132633, 4.64385789642771307621757561964, 4.94700711009357496864534098698, 5.39852558347754735104108081797, 5.97398016747507603353200514102, 6.73632075155858562443002999867, 7.11770500842890259526047007230, 7.34702615440567392596857320571, 8.112627193890949061808269468339, 8.198649989471353669686261061004

Graph of the $Z$-function along the critical line