Properties

Label 4-740772-1.1-c1e2-0-0
Degree $4$
Conductor $740772$
Sign $1$
Analytic cond. $47.2322$
Root an. cond. $2.62155$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3-s + 3·4-s − 2·6-s − 5·7-s − 4·8-s + 9-s + 3·12-s + 10·14-s + 5·16-s − 2·18-s + 19-s − 5·21-s − 4·24-s − 25-s + 27-s − 15·28-s − 3·29-s − 6·32-s + 3·36-s − 2·38-s + 9·41-s + 10·42-s + 43-s + 5·48-s + 7·49-s + 2·50-s + ⋯
L(s)  = 1  − 1.41·2-s + 0.577·3-s + 3/2·4-s − 0.816·6-s − 1.88·7-s − 1.41·8-s + 1/3·9-s + 0.866·12-s + 2.67·14-s + 5/4·16-s − 0.471·18-s + 0.229·19-s − 1.09·21-s − 0.816·24-s − 1/5·25-s + 0.192·27-s − 2.83·28-s − 0.557·29-s − 1.06·32-s + 1/2·36-s − 0.324·38-s + 1.40·41-s + 1.54·42-s + 0.152·43-s + 0.721·48-s + 49-s + 0.282·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 740772 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 740772 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(740772\)    =    \(2^{2} \cdot 3^{3} \cdot 19^{3}\)
Sign: $1$
Analytic conductor: \(47.2322\)
Root analytic conductor: \(2.62155\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 740772,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6592624679\)
\(L(\frac12)\) \(\approx\) \(0.6592624679\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
3$C_1$ \( 1 - T \)
19$C_1$ \( 1 - T \)
good5$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
7$C_2$ \( ( 1 + T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 13 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 8 T^{2} + p^{2} T^{4} \)
29$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 17 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 56 T^{2} + p^{2} T^{4} \)
41$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 3 T + p T^{2} ) \)
43$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
47$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
53$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 3 T + p T^{2} ) \)
61$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
67$C_2^2$ \( 1 + 91 T^{2} + p^{2} T^{4} \)
71$C_2$$\times$$C_2$ \( ( 1 + 3 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2^2$ \( 1 - 86 T^{2} + p^{2} T^{4} \)
89$C_2$$\times$$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2^2$ \( 1 - 140 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.418833611353872124643228840016, −7.78815056927119955040988031098, −7.48122429535089362779962510655, −7.17700152272162333708878409231, −6.59077008283523636029124142405, −6.18984850364578817872960351691, −5.93242350461445619756406693256, −5.23441031610075988010423822976, −4.42109395514014922756054503338, −3.72771342196013460624801741236, −3.35615304191926574093088690732, −2.76292330274880816941565421966, −2.33362143873072042261103300681, −1.45328346897671337588415246371, −0.48552472125052931553080682251, 0.48552472125052931553080682251, 1.45328346897671337588415246371, 2.33362143873072042261103300681, 2.76292330274880816941565421966, 3.35615304191926574093088690732, 3.72771342196013460624801741236, 4.42109395514014922756054503338, 5.23441031610075988010423822976, 5.93242350461445619756406693256, 6.18984850364578817872960351691, 6.59077008283523636029124142405, 7.17700152272162333708878409231, 7.48122429535089362779962510655, 7.78815056927119955040988031098, 8.418833611353872124643228840016

Graph of the $Z$-function along the critical line