Properties

Label 4-735e2-1.1-c3e2-0-4
Degree $4$
Conductor $540225$
Sign $1$
Analytic cond. $1880.64$
Root an. cond. $6.58531$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 6·3-s + 4-s − 10·5-s − 6·6-s + 9·8-s + 27·9-s − 10·10-s − 22·11-s − 6·12-s + 22·13-s + 60·15-s − 47·16-s − 116·17-s + 27·18-s − 102·19-s − 10·20-s − 22·22-s + 260·23-s − 54·24-s + 75·25-s + 22·26-s − 108·27-s − 196·29-s + 60·30-s − 150·31-s − 103·32-s + ⋯
L(s)  = 1  + 0.353·2-s − 1.15·3-s + 1/8·4-s − 0.894·5-s − 0.408·6-s + 0.397·8-s + 9-s − 0.316·10-s − 0.603·11-s − 0.144·12-s + 0.469·13-s + 1.03·15-s − 0.734·16-s − 1.65·17-s + 0.353·18-s − 1.23·19-s − 0.111·20-s − 0.213·22-s + 2.35·23-s − 0.459·24-s + 3/5·25-s + 0.165·26-s − 0.769·27-s − 1.25·29-s + 0.365·30-s − 0.869·31-s − 0.568·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 540225 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 540225 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(540225\)    =    \(3^{2} \cdot 5^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(1880.64\)
Root analytic conductor: \(6.58531\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 540225,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 + p T )^{2} \)
5$C_1$ \( ( 1 + p T )^{2} \)
7 \( 1 \)
good2$D_{4}$ \( 1 - T - p^{3} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 + 2 p T + 2718 T^{2} + 2 p^{4} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 - 22 T + 4450 T^{2} - 22 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 + 116 T + 9030 T^{2} + 116 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 + 102 T + 13134 T^{2} + 102 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 - 260 T + 34734 T^{2} - 260 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 + 196 T + 20942 T^{2} + 196 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 + 150 T + 36542 T^{2} + 150 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 + 96 T + 82550 T^{2} + 96 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 - 176 T - 16914 T^{2} - 176 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 + 8 p T + 171958 T^{2} + 8 p^{4} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 + 560 T + 248606 T^{2} + 560 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 - 326 T + 204138 T^{2} - 326 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 - 844 T + 474182 T^{2} - 844 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 - 204 T + 455006 T^{2} - 204 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 + 104 T + 537670 T^{2} + 104 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 - 1670 T + 1384382 T^{2} - 1670 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 - 386 T + 152218 T^{2} - 386 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 + 888 T + 1007454 T^{2} + 888 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 + 928 T + 600710 T^{2} + 928 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 + 588 T + 1495334 T^{2} + 588 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 + 522 T + 291282 T^{2} + 522 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.788231791734121133244800726488, −9.411982426372493529729514189457, −8.745001715394745214491684725138, −8.583567694137355609637747489301, −8.065227875334943420692308503853, −7.34849276792725376954747804927, −6.95963816708906646539237970173, −6.75053180079583229876213778141, −6.43239991955889644454996613334, −5.52897637370693726493914237096, −5.19352521014216754559126703206, −4.89056365480134540174576408687, −4.18131232564101398669639312479, −4.02174794598969722967063116783, −3.30289378211385297672103041551, −2.45221579180846618649857924098, −1.91758650570189710748989195870, −1.05497619576561492344049950820, 0, 0, 1.05497619576561492344049950820, 1.91758650570189710748989195870, 2.45221579180846618649857924098, 3.30289378211385297672103041551, 4.02174794598969722967063116783, 4.18131232564101398669639312479, 4.89056365480134540174576408687, 5.19352521014216754559126703206, 5.52897637370693726493914237096, 6.43239991955889644454996613334, 6.75053180079583229876213778141, 6.95963816708906646539237970173, 7.34849276792725376954747804927, 8.065227875334943420692308503853, 8.583567694137355609637747489301, 8.745001715394745214491684725138, 9.411982426372493529729514189457, 9.788231791734121133244800726488

Graph of the $Z$-function along the critical line