Properties

Label 4-735e2-1.1-c1e2-0-40
Degree $4$
Conductor $540225$
Sign $-1$
Analytic cond. $34.4452$
Root an. cond. $2.42260$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 2·5-s + 6·9-s − 6·15-s − 4·16-s − 6·17-s + 3·25-s + 9·27-s + 12·41-s − 12·43-s − 12·45-s − 18·47-s − 12·48-s − 18·51-s − 12·59-s − 28·67-s + 9·75-s − 2·79-s + 8·80-s + 9·81-s + 24·83-s + 12·85-s + 24·89-s − 36·101-s − 30·109-s − 21·121-s + 36·123-s + ⋯
L(s)  = 1  + 1.73·3-s − 0.894·5-s + 2·9-s − 1.54·15-s − 16-s − 1.45·17-s + 3/5·25-s + 1.73·27-s + 1.87·41-s − 1.82·43-s − 1.78·45-s − 2.62·47-s − 1.73·48-s − 2.52·51-s − 1.56·59-s − 3.42·67-s + 1.03·75-s − 0.225·79-s + 0.894·80-s + 81-s + 2.63·83-s + 1.30·85-s + 2.54·89-s − 3.58·101-s − 2.87·109-s − 1.90·121-s + 3.24·123-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 540225 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 540225 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(540225\)    =    \(3^{2} \cdot 5^{2} \cdot 7^{4}\)
Sign: $-1$
Analytic conductor: \(34.4452\)
Root analytic conductor: \(2.42260\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 540225,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 - p T + p T^{2} \)
5$C_1$ \( ( 1 + T )^{2} \)
7 \( 1 \)
good2$C_2$ \( ( 1 - p T + p T^{2} )( 1 + p T + p T^{2} ) \)
11$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
13$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
17$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
31$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
37$C_2$ \( ( 1 + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
59$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
79$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.210184381994137443519230420468, −7.79509008882088804636414623325, −7.67498052105787514083614275616, −6.86443729079700164782083564306, −6.67134380816033742861497166759, −6.22556914735544177770859299371, −5.21052441685335331437171683372, −4.64183738354361936328487143401, −4.33023383010768085745155570778, −3.90569825188449594842439463254, −3.07565995342284756040604408072, −2.95540115752479584920936053969, −2.09497145721286844219096031032, −1.56775892122303114558742737725, 0, 1.56775892122303114558742737725, 2.09497145721286844219096031032, 2.95540115752479584920936053969, 3.07565995342284756040604408072, 3.90569825188449594842439463254, 4.33023383010768085745155570778, 4.64183738354361936328487143401, 5.21052441685335331437171683372, 6.22556914735544177770859299371, 6.67134380816033742861497166759, 6.86443729079700164782083564306, 7.67498052105787514083614275616, 7.79509008882088804636414623325, 8.210184381994137443519230420468

Graph of the $Z$-function along the critical line