Properties

Label 4-72e4-1.1-c1e2-0-20
Degree $4$
Conductor $26873856$
Sign $1$
Analytic cond. $1713.50$
Root an. cond. $6.43385$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 6·13-s − 8·17-s − 7·25-s + 2·29-s + 16·37-s − 10·41-s − 11·49-s − 16·53-s + 14·61-s − 12·65-s − 24·73-s + 16·85-s + 8·89-s − 6·97-s − 26·101-s + 2·113-s − 19·121-s + 26·125-s + 127-s + 131-s + 137-s + 139-s − 4·145-s + 149-s + 151-s + 157-s + ⋯
L(s)  = 1  − 0.894·5-s + 1.66·13-s − 1.94·17-s − 7/5·25-s + 0.371·29-s + 2.63·37-s − 1.56·41-s − 1.57·49-s − 2.19·53-s + 1.79·61-s − 1.48·65-s − 2.80·73-s + 1.73·85-s + 0.847·89-s − 0.609·97-s − 2.58·101-s + 0.188·113-s − 1.72·121-s + 2.32·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 0.332·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 26873856 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26873856 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(26873856\)    =    \(2^{12} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(1713.50\)
Root analytic conductor: \(6.43385\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 26873856,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
7$C_2^2$ \( 1 + 11 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 19 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
19$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 29 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 + 35 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 + 11 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 53 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 + 115 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 + 59 T^{2} + p^{2} T^{4} \)
71$C_2^2$ \( 1 + 130 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
79$C_2^2$ \( 1 + 131 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 91 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.017079140951883488070335008157, −7.87952044240999256766427664650, −7.35405543094406606722650232925, −6.87439164003596768971370692637, −6.55697203242958446216014355797, −6.33797914767129957760086287711, −5.88096134532344983890968030900, −5.68785511731878536963599555958, −4.89640991614013405661000721394, −4.69051408731632134830622147168, −4.17060095760202355627080048597, −4.09011670481825052910150333744, −3.42151429483412598455337828239, −3.32985615785838910909568164509, −2.48022858347745485693222102074, −2.30903502624702498703141712776, −1.40070458817986799643669663738, −1.27928161018926854390990233596, 0, 0, 1.27928161018926854390990233596, 1.40070458817986799643669663738, 2.30903502624702498703141712776, 2.48022858347745485693222102074, 3.32985615785838910909568164509, 3.42151429483412598455337828239, 4.09011670481825052910150333744, 4.17060095760202355627080048597, 4.69051408731632134830622147168, 4.89640991614013405661000721394, 5.68785511731878536963599555958, 5.88096134532344983890968030900, 6.33797914767129957760086287711, 6.55697203242958446216014355797, 6.87439164003596768971370692637, 7.35405543094406606722650232925, 7.87952044240999256766427664650, 8.017079140951883488070335008157

Graph of the $Z$-function along the critical line