L(s) = 1 | − 2·4-s − 2·9-s + 4·16-s − 10·25-s + 4·36-s + 20·43-s − 7·49-s − 8·64-s − 5·81-s + 20·100-s + 12·107-s − 36·113-s + 14·121-s + 127-s + 131-s + 137-s + 139-s − 8·144-s + 149-s + 151-s + 157-s + 163-s + 167-s − 13·169-s − 40·172-s + 173-s + 179-s + ⋯ |
L(s) = 1 | − 4-s − 2/3·9-s + 16-s − 2·25-s + 2/3·36-s + 3.04·43-s − 49-s − 64-s − 5/9·81-s + 2·100-s + 1.16·107-s − 3.38·113-s + 1.27·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 2/3·144-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 169-s − 3.04·172-s + 0.0760·173-s + 0.0747·179-s + ⋯ |
Λ(s)=(=(529984s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(529984s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
529984
= 26⋅72⋅132
|
Sign: |
1
|
Analytic conductor: |
33.7922 |
Root analytic conductor: |
2.41103 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 529984, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.9406444143 |
L(21) |
≈ |
0.9406444143 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | 1+pT2 |
| 7 | C2 | 1+pT2 |
| 13 | C2 | 1+pT2 |
good | 3 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 5 | C2 | (1+pT2)2 |
| 11 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 17 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 19 | C22 | 1−34T2+p2T4 |
| 23 | C2 | (1−pT2)2 |
| 29 | C2 | (1−pT2)2 |
| 31 | C2 | (1+pT2)2 |
| 37 | C2 | (1+pT2)2 |
| 41 | C22 | 1−46T2+p2T4 |
| 43 | C2 | (1−10T+pT2)2 |
| 47 | C2 | (1+pT2)2 |
| 53 | C2 | (1−pT2)2 |
| 59 | C22 | 1−82T2+p2T4 |
| 61 | C2 | (1+pT2)2 |
| 67 | C2 | (1−14T+pT2)(1+14T+pT2) |
| 71 | C2 | (1+pT2)2 |
| 73 | C22 | 1−142T2+p2T4 |
| 79 | C2 | (1−pT2)2 |
| 83 | C22 | 1+158T2+p2T4 |
| 89 | C22 | 1+146T2+p2T4 |
| 97 | C22 | 1−94T2+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.508960193822939486478690692279, −8.045955124583760802852609303993, −7.62996356347171534713933850235, −7.38480514001354382232095887813, −6.49116829918350661385933701592, −6.12234244835669884186306396683, −5.55028250842661352481992762397, −5.41101012351539568677522043386, −4.59719182905216380872528147414, −4.14699901367412754328218294373, −3.77676223329212239240206310018, −3.05871939896826161251031442694, −2.44878784497011915880737547029, −1.59626055961315407632144667284, −0.51837991524260537333013625572,
0.51837991524260537333013625572, 1.59626055961315407632144667284, 2.44878784497011915880737547029, 3.05871939896826161251031442694, 3.77676223329212239240206310018, 4.14699901367412754328218294373, 4.59719182905216380872528147414, 5.41101012351539568677522043386, 5.55028250842661352481992762397, 6.12234244835669884186306396683, 6.49116829918350661385933701592, 7.38480514001354382232095887813, 7.62996356347171534713933850235, 8.045955124583760802852609303993, 8.508960193822939486478690692279