Properties

Label 4-728e2-1.1-c1e2-0-2
Degree $4$
Conductor $529984$
Sign $1$
Analytic cond. $33.7922$
Root an. cond. $2.41103$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 2·9-s + 4·16-s − 10·25-s + 4·36-s + 20·43-s − 7·49-s − 8·64-s − 5·81-s + 20·100-s + 12·107-s − 36·113-s + 14·121-s + 127-s + 131-s + 137-s + 139-s − 8·144-s + 149-s + 151-s + 157-s + 163-s + 167-s − 13·169-s − 40·172-s + 173-s + 179-s + ⋯
L(s)  = 1  − 4-s − 2/3·9-s + 16-s − 2·25-s + 2/3·36-s + 3.04·43-s − 49-s − 64-s − 5/9·81-s + 2·100-s + 1.16·107-s − 3.38·113-s + 1.27·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 2/3·144-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 169-s − 3.04·172-s + 0.0760·173-s + 0.0747·179-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 529984 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 529984 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(529984\)    =    \(2^{6} \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(33.7922\)
Root analytic conductor: \(2.41103\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 529984,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9406444143\)
\(L(\frac12)\) \(\approx\) \(0.9406444143\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T^{2} \)
7$C_2$ \( 1 + p T^{2} \)
13$C_2$ \( 1 + p T^{2} \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
5$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
19$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - p T^{2} )^{2} \)
29$C_2$ \( ( 1 - p T^{2} )^{2} \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + p T^{2} )^{2} \)
41$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 82 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 142 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 158 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 146 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 94 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.508960193822939486478690692279, −8.045955124583760802852609303993, −7.62996356347171534713933850235, −7.38480514001354382232095887813, −6.49116829918350661385933701592, −6.12234244835669884186306396683, −5.55028250842661352481992762397, −5.41101012351539568677522043386, −4.59719182905216380872528147414, −4.14699901367412754328218294373, −3.77676223329212239240206310018, −3.05871939896826161251031442694, −2.44878784497011915880737547029, −1.59626055961315407632144667284, −0.51837991524260537333013625572, 0.51837991524260537333013625572, 1.59626055961315407632144667284, 2.44878784497011915880737547029, 3.05871939896826161251031442694, 3.77676223329212239240206310018, 4.14699901367412754328218294373, 4.59719182905216380872528147414, 5.41101012351539568677522043386, 5.55028250842661352481992762397, 6.12234244835669884186306396683, 6.49116829918350661385933701592, 7.38480514001354382232095887813, 7.62996356347171534713933850235, 8.045955124583760802852609303993, 8.508960193822939486478690692279

Graph of the $Z$-function along the critical line