Properties

Label 4-720e2-1.1-c1e2-0-77
Degree $4$
Conductor $518400$
Sign $1$
Analytic cond. $33.0536$
Root an. cond. $2.39775$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·4-s − 2·5-s − 6·7-s + 4·10-s + 2·11-s − 4·13-s + 12·14-s − 4·16-s − 2·17-s + 6·19-s − 4·20-s − 4·22-s + 2·23-s − 25-s + 8·26-s − 12·28-s − 14·29-s + 8·32-s + 4·34-s + 12·35-s − 12·37-s − 12·38-s + 8·43-s + 4·44-s − 4·46-s − 14·47-s + ⋯
L(s)  = 1  − 1.41·2-s + 4-s − 0.894·5-s − 2.26·7-s + 1.26·10-s + 0.603·11-s − 1.10·13-s + 3.20·14-s − 16-s − 0.485·17-s + 1.37·19-s − 0.894·20-s − 0.852·22-s + 0.417·23-s − 1/5·25-s + 1.56·26-s − 2.26·28-s − 2.59·29-s + 1.41·32-s + 0.685·34-s + 2.02·35-s − 1.97·37-s − 1.94·38-s + 1.21·43-s + 0.603·44-s − 0.589·46-s − 2.04·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 518400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 518400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(518400\)    =    \(2^{8} \cdot 3^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(33.0536\)
Root analytic conductor: \(2.39775\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 518400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T + p T^{2} \)
3 \( 1 \)
5$C_2$ \( 1 + 2 T + p T^{2} \)
good7$C_2^2$ \( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
13$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
17$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
29$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 58 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 - 66 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 14 T + 98 T^{2} + 14 p T^{3} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 42 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2^2$ \( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 162 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 + 22 T + 242 T^{2} + 22 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.860292456320144955217588739372, −9.674422496231680280720683627009, −9.359720314011369485442164279945, −9.236980611872958340383987036003, −8.497223744181190731333463216608, −8.157539091289481418000010203263, −7.42349037622531566739298720648, −7.28601148568030039277684638473, −6.77742169733307048759500197434, −6.71944664485963193718107545436, −5.65151562715689229601076005751, −5.53526374764812640783799225316, −4.59012254762310538829505268378, −3.97897270449761328231240330488, −3.48070920141400045756282866034, −3.07223970554371371951409765966, −2.29034501122603879683994059558, −1.39071112323543221956068391186, 0, 0, 1.39071112323543221956068391186, 2.29034501122603879683994059558, 3.07223970554371371951409765966, 3.48070920141400045756282866034, 3.97897270449761328231240330488, 4.59012254762310538829505268378, 5.53526374764812640783799225316, 5.65151562715689229601076005751, 6.71944664485963193718107545436, 6.77742169733307048759500197434, 7.28601148568030039277684638473, 7.42349037622531566739298720648, 8.157539091289481418000010203263, 8.497223744181190731333463216608, 9.236980611872958340383987036003, 9.359720314011369485442164279945, 9.674422496231680280720683627009, 9.860292456320144955217588739372

Graph of the $Z$-function along the critical line