Properties

Label 4-720e2-1.1-c1e2-0-49
Degree $4$
Conductor $518400$
Sign $-1$
Analytic cond. $33.0536$
Root an. cond. $2.39775$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s − 7·19-s + 3·23-s + 4·25-s + 15·29-s − 15·43-s − 2·49-s − 3·53-s − 3·67-s − 3·71-s + 18·73-s + 21·95-s + 12·97-s − 12·101-s − 9·115-s + 121-s + 3·125-s + 127-s + 131-s + 137-s + 139-s − 45·145-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  − 1.34·5-s − 1.60·19-s + 0.625·23-s + 4/5·25-s + 2.78·29-s − 2.28·43-s − 2/7·49-s − 0.412·53-s − 0.366·67-s − 0.356·71-s + 2.10·73-s + 2.15·95-s + 1.21·97-s − 1.19·101-s − 0.839·115-s + 1/11·121-s + 0.268·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 3.73·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 518400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 518400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(518400\)    =    \(2^{8} \cdot 3^{4} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(33.0536\)
Root analytic conductor: \(2.39775\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 518400,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_2$ \( 1 + 3 T + p T^{2} \)
good7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
19$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
23$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
31$C_2^2$ \( 1 - 32 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 29 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 - 28 T^{2} + p^{2} T^{4} \)
43$C_2$$\times$$C_2$ \( ( 1 + 7 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2^2$ \( 1 + 17 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 65 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 15 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 - 7 T + p T^{2} ) \)
79$C_2^2$ \( 1 + 130 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 - 110 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 98 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.390458744732562282801165925174, −7.86321354187183783039895204895, −7.48014655646988318375931244152, −6.74962989482314584805541021995, −6.55377070108065675411040352814, −6.23414241184305987199807199456, −5.24802402083850128266850887580, −4.86777783855550131563533862529, −4.45259921660819926503150074110, −3.94686773224235125859275206009, −3.34112097926251195216790938275, −2.85773074773182498526910783887, −2.09088263047254841529058600267, −1.07386153798253852754348245763, 0, 1.07386153798253852754348245763, 2.09088263047254841529058600267, 2.85773074773182498526910783887, 3.34112097926251195216790938275, 3.94686773224235125859275206009, 4.45259921660819926503150074110, 4.86777783855550131563533862529, 5.24802402083850128266850887580, 6.23414241184305987199807199456, 6.55377070108065675411040352814, 6.74962989482314584805541021995, 7.48014655646988318375931244152, 7.86321354187183783039895204895, 8.390458744732562282801165925174

Graph of the $Z$-function along the critical line