Properties

Label 4-720e2-1.1-c1e2-0-36
Degree $4$
Conductor $518400$
Sign $1$
Analytic cond. $33.0536$
Root an. cond. $2.39775$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 2·13-s + 10·17-s − 25-s − 14·37-s + 20·41-s − 10·53-s + 24·61-s + 4·65-s + 22·73-s + 20·85-s − 26·97-s − 40·101-s + 30·113-s + 22·121-s − 12·125-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s + 173-s + ⋯
L(s)  = 1  + 0.894·5-s + 0.554·13-s + 2.42·17-s − 1/5·25-s − 2.30·37-s + 3.12·41-s − 1.37·53-s + 3.07·61-s + 0.496·65-s + 2.57·73-s + 2.16·85-s − 2.63·97-s − 3.98·101-s + 2.82·113-s + 2·121-s − 1.07·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2/13·169-s + 0.0760·173-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 518400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 518400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(518400\)    =    \(2^{8} \cdot 3^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(33.0536\)
Root analytic conductor: \(2.39775\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 518400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.654491335\)
\(L(\frac12)\) \(\approx\) \(2.654491335\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_2$ \( 1 - 2 T + p T^{2} \)
good7$C_2^2$ \( 1 + p^{2} T^{4} \)
11$C_2$ \( ( 1 - p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2^2$ \( 1 + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
31$C_2$ \( ( 1 - p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 + p^{2} T^{4} \)
47$C_2^2$ \( 1 + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 + p^{2} T^{4} \)
71$C_2$ \( ( 1 - p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
97$C_2$ \( ( 1 + 8 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.66662421035005122413665592620, −9.898988187197046592924298763821, −9.813040406290643222927654857079, −9.629131391752696114180756406965, −8.892777616076392053113395387391, −8.538180891490929448922770681746, −7.86095739511536240670876666551, −7.82855208493149221467800522786, −7.05712736452429743387604982721, −6.69874058099085780973968331031, −6.06599255800950452550590219230, −5.66122178961127731544996289487, −5.37953566580412955310819941787, −4.93054464557888470245271706652, −3.85724090966648733626557431643, −3.80709863824822138295433709877, −2.98570042786697898155467027824, −2.38768127530993581969491773566, −1.58826915175872574550972198792, −0.935267726284866606307417625882, 0.935267726284866606307417625882, 1.58826915175872574550972198792, 2.38768127530993581969491773566, 2.98570042786697898155467027824, 3.80709863824822138295433709877, 3.85724090966648733626557431643, 4.93054464557888470245271706652, 5.37953566580412955310819941787, 5.66122178961127731544996289487, 6.06599255800950452550590219230, 6.69874058099085780973968331031, 7.05712736452429743387604982721, 7.82855208493149221467800522786, 7.86095739511536240670876666551, 8.538180891490929448922770681746, 8.892777616076392053113395387391, 9.629131391752696114180756406965, 9.813040406290643222927654857079, 9.898988187197046592924298763821, 10.66662421035005122413665592620

Graph of the $Z$-function along the critical line