Properties

Label 4-720e2-1.1-c1e2-0-2
Degree $4$
Conductor $518400$
Sign $1$
Analytic cond. $33.0536$
Root an. cond. $2.39775$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 8·19-s − 8·23-s − 25-s − 2·29-s + 16·43-s − 8·49-s − 8·53-s + 8·67-s − 8·71-s + 14·73-s + 16·95-s + 2·97-s + 26·101-s + 16·115-s − 16·121-s + 12·125-s + 127-s + 131-s + 137-s + 139-s + 4·145-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  − 0.894·5-s − 1.83·19-s − 1.66·23-s − 1/5·25-s − 0.371·29-s + 2.43·43-s − 8/7·49-s − 1.09·53-s + 0.977·67-s − 0.949·71-s + 1.63·73-s + 1.64·95-s + 0.203·97-s + 2.58·101-s + 1.49·115-s − 1.45·121-s + 1.07·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.332·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 518400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 518400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(518400\)    =    \(2^{8} \cdot 3^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(33.0536\)
Root analytic conductor: \(2.39775\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 518400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8754599778\)
\(L(\frac12)\) \(\approx\) \(0.8754599778\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_2$ \( 1 + 2 T + p T^{2} \)
good7$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 16 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 16 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
19$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \)
23$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 16 T^{2} + p^{2} T^{4} \)
41$C_2^2$ \( 1 - 32 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 32 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
67$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
79$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
89$C_2^2$ \( 1 - 128 T^{2} + p^{2} T^{4} \)
97$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.314334014941503895117573581970, −8.090371015852884015226853139006, −7.66652679328928562657775019018, −7.27335787717484678282667887392, −6.60393746185654584993751398194, −6.15073938107980294995217570703, −5.93202345397023696020189144282, −5.14248296562776779041361787021, −4.56799059900500339376749211651, −4.05128853208848617550515865771, −3.86427764248538614412679026704, −3.09501962778600991355133931313, −2.27685061571883529880942131465, −1.82258589298617145601879653522, −0.47356236845334265096357470112, 0.47356236845334265096357470112, 1.82258589298617145601879653522, 2.27685061571883529880942131465, 3.09501962778600991355133931313, 3.86427764248538614412679026704, 4.05128853208848617550515865771, 4.56799059900500339376749211651, 5.14248296562776779041361787021, 5.93202345397023696020189144282, 6.15073938107980294995217570703, 6.60393746185654584993751398194, 7.27335787717484678282667887392, 7.66652679328928562657775019018, 8.090371015852884015226853139006, 8.314334014941503895117573581970

Graph of the $Z$-function along the critical line