Properties

Label 4-72000-1.1-c1e2-0-28
Degree $4$
Conductor $72000$
Sign $-1$
Analytic cond. $4.59078$
Root an. cond. $1.46376$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 5-s − 4·7-s + 9-s − 2·15-s − 12·17-s − 8·21-s + 25-s − 4·27-s + 4·35-s + 20·43-s − 45-s − 2·49-s − 24·51-s − 12·53-s − 24·59-s + 4·61-s − 4·63-s − 4·67-s + 24·71-s + 2·75-s − 11·81-s + 12·85-s − 28·103-s + 8·105-s + 4·109-s − 12·113-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.447·5-s − 1.51·7-s + 1/3·9-s − 0.516·15-s − 2.91·17-s − 1.74·21-s + 1/5·25-s − 0.769·27-s + 0.676·35-s + 3.04·43-s − 0.149·45-s − 2/7·49-s − 3.36·51-s − 1.64·53-s − 3.12·59-s + 0.512·61-s − 0.503·63-s − 0.488·67-s + 2.84·71-s + 0.230·75-s − 1.22·81-s + 1.30·85-s − 2.75·103-s + 0.780·105-s + 0.383·109-s − 1.12·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 72000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(72000\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{3}\)
Sign: $-1$
Analytic conductor: \(4.59078\)
Root analytic conductor: \(1.46376\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 72000,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 - 2 T + p T^{2} \)
5$C_1$ \( 1 + T \)
good7$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.447689111417190951947467353722, −9.113263281253576510886575085659, −8.740293324354028093320034492248, −8.008294857926527437201173134092, −7.71273110823499542846308181544, −6.96167091691043492420755836355, −6.41842389830764202453884824049, −6.27087624192875571051851265258, −5.24854435453179347418331807133, −4.28530365432405873873397666950, −4.12250433368686324236236368171, −3.16807967427295861033734664069, −2.76929890617261215013507568311, −2.01836233216080453835298575952, 0, 2.01836233216080453835298575952, 2.76929890617261215013507568311, 3.16807967427295861033734664069, 4.12250433368686324236236368171, 4.28530365432405873873397666950, 5.24854435453179347418331807133, 6.27087624192875571051851265258, 6.41842389830764202453884824049, 6.96167091691043492420755836355, 7.71273110823499542846308181544, 8.008294857926527437201173134092, 8.740293324354028093320034492248, 9.113263281253576510886575085659, 9.447689111417190951947467353722

Graph of the $Z$-function along the critical line