L(s) = 1 | − 2·2-s + 3·4-s + 2·7-s − 4·8-s + 9-s − 4·14-s + 5·16-s − 2·18-s − 12·23-s − 10·25-s + 6·28-s − 6·32-s + 3·36-s + 16·37-s − 8·43-s + 24·46-s − 3·49-s + 20·50-s + 12·53-s − 8·56-s + 2·63-s + 7·64-s − 8·67-s + 12·71-s − 4·72-s − 32·74-s − 20·79-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 3/2·4-s + 0.755·7-s − 1.41·8-s + 1/3·9-s − 1.06·14-s + 5/4·16-s − 0.471·18-s − 2.50·23-s − 2·25-s + 1.13·28-s − 1.06·32-s + 1/2·36-s + 2.63·37-s − 1.21·43-s + 3.53·46-s − 3/7·49-s + 2.82·50-s + 1.64·53-s − 1.06·56-s + 0.251·63-s + 7/8·64-s − 0.977·67-s + 1.42·71-s − 0.471·72-s − 3.71·74-s − 2.25·79-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 509796 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 509796 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | $C_1$ | \( ( 1 + T )^{2} \) |
| 3 | $C_1$$\times$$C_1$ | \( ( 1 - T )( 1 + T ) \) |
| 7 | $C_2$ | \( 1 - 2 T + p T^{2} \) |
| 17 | $C_1$$\times$$C_1$ | \( ( 1 - T )( 1 + T ) \) |
good | 5 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 11 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 13 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 19 | $C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 23 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) |
| 29 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 31 | $C_2$ | \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 37 | $C_2$ | \( ( 1 - 8 T + p T^{2} )^{2} \) |
| 41 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 43 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 47 | $C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 53 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
| 59 | $C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 61 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 67 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 71 | $C_2$ | \( ( 1 - 6 T + p T^{2} )^{2} \) |
| 73 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 79 | $C_2$ | \( ( 1 + 10 T + p T^{2} )^{2} \) |
| 83 | $C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 89 | $C_2$ | \( ( 1 - 18 T + p T^{2} )( 1 + 18 T + p T^{2} ) \) |
| 97 | $C_2$ | \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.367508603382134314146293072792, −7.947184329792423035407392570167, −7.50641789037179894281138679970, −7.25305712045924996183772000512, −6.46045064507146826089961982136, −5.96956680213085492365415051586, −5.86386080475725522331193199391, −5.05078174394179622216561477864, −4.20559745353981447975579336986, −4.05372696693836488551925909574, −3.18505726016215617296720668342, −2.20095556111953042794406475709, −2.04126125287275460099535053657, −1.17658582231940763813732019251, 0,
1.17658582231940763813732019251, 2.04126125287275460099535053657, 2.20095556111953042794406475709, 3.18505726016215617296720668342, 4.05372696693836488551925909574, 4.20559745353981447975579336986, 5.05078174394179622216561477864, 5.86386080475725522331193199391, 5.96956680213085492365415051586, 6.46045064507146826089961982136, 7.25305712045924996183772000512, 7.50641789037179894281138679970, 7.947184329792423035407392570167, 8.367508603382134314146293072792