Properties

Label 4-6e6-1.1-c6e2-0-0
Degree $4$
Conductor $46656$
Sign $1$
Analytic cond. $2469.26$
Root an. cond. $7.04923$
Motivic weight $6$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16·2-s + 192·4-s + 142·5-s − 470·7-s − 2.04e3·8-s − 2.27e3·10-s − 2.63e3·11-s + 7.52e3·14-s + 2.04e4·16-s + 2.72e4·20-s + 4.20e4·22-s + 1.56e4·25-s − 9.02e4·28-s − 2.30e3·29-s + 5.46e4·31-s − 1.96e5·32-s − 6.67e4·35-s − 2.90e5·40-s − 5.04e5·44-s + 1.17e5·49-s − 2.50e5·50-s + 3.84e4·53-s − 3.73e5·55-s + 9.62e5·56-s + 3.68e4·58-s + 2.06e5·59-s − 8.74e5·62-s + ⋯
L(s)  = 1  − 2·2-s + 3·4-s + 1.13·5-s − 1.37·7-s − 4·8-s − 2.27·10-s − 1.97·11-s + 2.74·14-s + 5·16-s + 3.40·20-s + 3.95·22-s + 25-s − 4.11·28-s − 0.0943·29-s + 1.83·31-s − 6·32-s − 1.55·35-s − 4.54·40-s − 5.92·44-s + 49-s − 2·50-s + 0.258·53-s − 2.24·55-s + 5.48·56-s + 0.188·58-s + 1.00·59-s − 3.67·62-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 46656 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 46656 ^{s/2} \, \Gamma_{\C}(s+3)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(46656\)    =    \(2^{6} \cdot 3^{6}\)
Sign: $1$
Analytic conductor: \(2469.26\)
Root analytic conductor: \(7.04923\)
Motivic weight: \(6\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 46656,\ (\ :3, 3),\ 1)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(1.120821514\)
\(L(\frac12)\) \(\approx\) \(1.120821514\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + p^{3} T )^{2} \)
3 \( 1 \)
good5$C_2^2$ \( 1 - 142 T + 4539 T^{2} - 142 p^{6} T^{3} + p^{12} T^{4} \)
7$C_2^2$ \( 1 + 470 T + 103251 T^{2} + 470 p^{6} T^{3} + p^{12} T^{4} \)
11$C_2^2$ \( 1 + 2630 T + 5145339 T^{2} + 2630 p^{6} T^{3} + p^{12} T^{4} \)
13$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
17$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
19$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
23$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
29$C_2$ \( ( 1 + 1150 T + p^{6} T^{2} )^{2} \)
31$C_2^2$ \( 1 - 54682 T + 2102617443 T^{2} - 54682 p^{6} T^{3} + p^{12} T^{4} \)
37$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
41$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
43$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
47$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
53$C_2^2$ \( 1 - 38446 T - 20686266213 T^{2} - 38446 p^{6} T^{3} + p^{12} T^{4} \)
59$C_2$ \( ( 1 - 103430 T + p^{6} T^{2} )^{2} \)
61$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
67$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
71$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
73$C_2^2$ \( 1 - 674350 T + 303413696211 T^{2} - 674350 p^{6} T^{3} + p^{12} T^{4} \)
79$C_2$ \( ( 1 - 890822 T + p^{6} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 363274 T - 194972374293 T^{2} - 363274 p^{6} T^{3} + p^{12} T^{4} \)
89$C_1$$\times$$C_1$ \( ( 1 - p^{3} T )^{2}( 1 + p^{3} T )^{2} \)
97$C_2^2$ \( 1 - 1495870 T + 1404655051971 T^{2} - 1495870 p^{6} T^{3} + p^{12} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.16606678514887364645101849772, −10.61081677252487433962014429607, −10.31327638894459821560679942309, −10.03405354799611633730972979663, −9.573170497495282916292493299707, −9.196744785296293781649039552168, −8.603534990534067637483810395972, −8.065737933066201679163213211695, −7.67047529363358717176961433574, −7.01583857828002489010421846931, −6.39279220170267721410550392785, −6.24815762094365991933600108501, −5.51278163062920859653123914074, −4.98261010140904316582905518617, −3.45098228479435734384953701284, −2.97047466431638725589750880387, −2.31018607439892561349859063462, −2.05898862350332563214654642917, −0.71529742234599809146725436633, −0.58897739277851823822468445471, 0.58897739277851823822468445471, 0.71529742234599809146725436633, 2.05898862350332563214654642917, 2.31018607439892561349859063462, 2.97047466431638725589750880387, 3.45098228479435734384953701284, 4.98261010140904316582905518617, 5.51278163062920859653123914074, 6.24815762094365991933600108501, 6.39279220170267721410550392785, 7.01583857828002489010421846931, 7.67047529363358717176961433574, 8.065737933066201679163213211695, 8.603534990534067637483810395972, 9.196744785296293781649039552168, 9.573170497495282916292493299707, 10.03405354799611633730972979663, 10.31327638894459821560679942309, 10.61081677252487433962014429607, 11.16606678514887364645101849772

Graph of the $Z$-function along the critical line