Properties

Label 4-6e6-1.1-c5e2-0-5
Degree $4$
Conductor $46656$
Sign $1$
Analytic cond. $1200.13$
Root an. cond. $5.88582$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 20·5-s + 12·7-s − 238·11-s − 472·13-s − 368·17-s − 56·19-s + 1.02e3·23-s − 4.06e3·25-s + 144·29-s − 8.22e3·31-s + 240·35-s − 1.40e4·37-s − 6.69e3·41-s − 1.51e4·43-s + 156·47-s − 3.16e4·49-s − 3.00e3·53-s − 4.76e3·55-s + 2.77e4·59-s − 5.78e4·61-s − 9.44e3·65-s − 7.41e4·67-s + 5.87e4·71-s − 4.96e4·73-s − 2.85e3·77-s − 8.29e4·79-s + 2.55e4·83-s + ⋯
L(s)  = 1  + 0.357·5-s + 0.0925·7-s − 0.593·11-s − 0.774·13-s − 0.308·17-s − 0.0355·19-s + 0.405·23-s − 1.30·25-s + 0.0317·29-s − 1.53·31-s + 0.0331·35-s − 1.69·37-s − 0.622·41-s − 1.24·43-s + 0.0103·47-s − 1.88·49-s − 0.146·53-s − 0.212·55-s + 1.03·59-s − 1.99·61-s − 0.277·65-s − 2.01·67-s + 1.38·71-s − 1.08·73-s − 0.0548·77-s − 1.49·79-s + 0.407·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 46656 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 46656 ^{s/2} \, \Gamma_{\C}(s+5/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(46656\)    =    \(2^{6} \cdot 3^{6}\)
Sign: $1$
Analytic conductor: \(1200.13\)
Root analytic conductor: \(5.88582\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 46656,\ (\ :5/2, 5/2),\ 1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$D_{4}$ \( 1 - 4 p T + 4469 T^{2} - 4 p^{6} T^{3} + p^{10} T^{4} \)
7$D_{4}$ \( 1 - 12 T + 31769 T^{2} - 12 p^{5} T^{3} + p^{10} T^{4} \)
11$D_{4}$ \( 1 + 238 T + 65399 T^{2} + 238 p^{5} T^{3} + p^{10} T^{4} \)
13$D_{4}$ \( 1 + 472 T + 316746 T^{2} + 472 p^{5} T^{3} + p^{10} T^{4} \)
17$D_{4}$ \( 1 + 368 T + 2392034 T^{2} + 368 p^{5} T^{3} + p^{10} T^{4} \)
19$D_{4}$ \( 1 + 56 T + 2236818 T^{2} + 56 p^{5} T^{3} + p^{10} T^{4} \)
23$D_{4}$ \( 1 - 1028 T + 11210738 T^{2} - 1028 p^{5} T^{3} + p^{10} T^{4} \)
29$D_{4}$ \( 1 - 144 T + 27115606 T^{2} - 144 p^{5} T^{3} + p^{10} T^{4} \)
31$D_{4}$ \( 1 + 8228 T + 59283897 T^{2} + 8228 p^{5} T^{3} + p^{10} T^{4} \)
37$D_{4}$ \( 1 + 14076 T + 173654894 T^{2} + 14076 p^{5} T^{3} + p^{10} T^{4} \)
41$D_{4}$ \( 1 + 6696 T + 214924702 T^{2} + 6696 p^{5} T^{3} + p^{10} T^{4} \)
43$D_{4}$ \( 1 + 15112 T + 233547522 T^{2} + 15112 p^{5} T^{3} + p^{10} T^{4} \)
47$D_{4}$ \( 1 - 156 T + 438351202 T^{2} - 156 p^{5} T^{3} + p^{10} T^{4} \)
53$D_{4}$ \( 1 + 3004 T + 829164869 T^{2} + 3004 p^{5} T^{3} + p^{10} T^{4} \)
59$D_{4}$ \( 1 - 27704 T + 1552385318 T^{2} - 27704 p^{5} T^{3} + p^{10} T^{4} \)
61$D_{4}$ \( 1 + 57856 T + 2525901402 T^{2} + 57856 p^{5} T^{3} + p^{10} T^{4} \)
67$D_{4}$ \( 1 + 74168 T + 4013167026 T^{2} + 74168 p^{5} T^{3} + p^{10} T^{4} \)
71$D_{4}$ \( 1 - 58768 T + 3739461902 T^{2} - 58768 p^{5} T^{3} + p^{10} T^{4} \)
73$D_{4}$ \( 1 + 49606 T + 1887735819 T^{2} + 49606 p^{5} T^{3} + p^{10} T^{4} \)
79$D_{4}$ \( 1 + 82984 T + 6683867166 T^{2} + 82984 p^{5} T^{3} + p^{10} T^{4} \)
83$D_{4}$ \( 1 - 25570 T + 6145459415 T^{2} - 25570 p^{5} T^{3} + p^{10} T^{4} \)
89$D_{4}$ \( 1 - 21480 T - 378921602 T^{2} - 21480 p^{5} T^{3} + p^{10} T^{4} \)
97$D_{4}$ \( 1 + 79826 T + 17389451667 T^{2} + 79826 p^{5} T^{3} + p^{10} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.10145065157767210296110161959, −10.76944611737549123897117764318, −10.03106967034424180883576224949, −9.973155749542527735658409470751, −9.129062917198354371185598072747, −8.918182626416143555359766963862, −8.014154132347385018296000132000, −7.85371991160512383897219764947, −6.96062834897083997997721114507, −6.81958518510998512651980683454, −5.87123190617526082569057740676, −5.44317699340944459547565825020, −4.91526027571241224008405259280, −4.28896512849060260825553330367, −3.41451454357046559498352037160, −2.90413662137170426021878356643, −1.88599486029054831176877897060, −1.61769760096525290798613204725, 0, 0, 1.61769760096525290798613204725, 1.88599486029054831176877897060, 2.90413662137170426021878356643, 3.41451454357046559498352037160, 4.28896512849060260825553330367, 4.91526027571241224008405259280, 5.44317699340944459547565825020, 5.87123190617526082569057740676, 6.81958518510998512651980683454, 6.96062834897083997997721114507, 7.85371991160512383897219764947, 8.014154132347385018296000132000, 8.918182626416143555359766963862, 9.129062917198354371185598072747, 9.973155749542527735658409470751, 10.03106967034424180883576224949, 10.76944611737549123897117764318, 11.10145065157767210296110161959

Graph of the $Z$-function along the critical line