Properties

Label 4-6e6-1.1-c5e2-0-3
Degree $4$
Conductor $46656$
Sign $1$
Analytic cond. $1200.13$
Root an. cond. $5.88582$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 28·5-s + 54·7-s − 148·11-s + 242·13-s − 212·17-s − 62·19-s − 2.30e3·23-s − 2.60e3·25-s − 2.40e3·29-s − 968·31-s − 1.51e3·35-s − 8.17e3·37-s − 1.92e4·41-s + 1.12e4·43-s − 2.81e4·47-s − 1.91e4·49-s − 4.69e4·53-s + 4.14e3·55-s − 2.07e4·59-s − 1.17e4·61-s − 6.77e3·65-s + 3.45e4·67-s − 1.03e5·71-s − 5.61e4·73-s − 7.99e3·77-s + 1.60e4·79-s − 8.62e4·83-s + ⋯
L(s)  = 1  − 0.500·5-s + 0.416·7-s − 0.368·11-s + 0.397·13-s − 0.177·17-s − 0.0394·19-s − 0.909·23-s − 0.832·25-s − 0.529·29-s − 0.180·31-s − 0.208·35-s − 0.982·37-s − 1.78·41-s + 0.929·43-s − 1.85·47-s − 1.14·49-s − 2.29·53-s + 0.184·55-s − 0.777·59-s − 0.404·61-s − 0.198·65-s + 0.939·67-s − 2.42·71-s − 1.23·73-s − 0.153·77-s + 0.288·79-s − 1.37·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 46656 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 46656 ^{s/2} \, \Gamma_{\C}(s+5/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(46656\)    =    \(2^{6} \cdot 3^{6}\)
Sign: $1$
Analytic conductor: \(1200.13\)
Root analytic conductor: \(5.88582\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 46656,\ (\ :5/2, 5/2),\ 1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$D_{4}$ \( 1 + 28 T + 3386 T^{2} + 28 p^{5} T^{3} + p^{10} T^{4} \)
7$D_{4}$ \( 1 - 54 T + 22103 T^{2} - 54 p^{5} T^{3} + p^{10} T^{4} \)
11$D_{4}$ \( 1 + 148 T + 300038 T^{2} + 148 p^{5} T^{3} + p^{10} T^{4} \)
13$D_{4}$ \( 1 - 242 T + 451227 T^{2} - 242 p^{5} T^{3} + p^{10} T^{4} \)
17$D_{4}$ \( 1 + 212 T + 2333810 T^{2} + 212 p^{5} T^{3} + p^{10} T^{4} \)
19$D_{4}$ \( 1 + 62 T + 4757319 T^{2} + 62 p^{5} T^{3} + p^{10} T^{4} \)
23$D_{4}$ \( 1 + 2308 T + 12585662 T^{2} + 2308 p^{5} T^{3} + p^{10} T^{4} \)
29$D_{4}$ \( 1 + 2400 T + 18765658 T^{2} + 2400 p^{5} T^{3} + p^{10} T^{4} \)
31$D_{4}$ \( 1 + 968 T + 33795918 T^{2} + 968 p^{5} T^{3} + p^{10} T^{4} \)
37$D_{4}$ \( 1 + 8178 T + 40241675 T^{2} + 8178 p^{5} T^{3} + p^{10} T^{4} \)
41$D_{4}$ \( 1 + 19200 T + 245536402 T^{2} + 19200 p^{5} T^{3} + p^{10} T^{4} \)
43$D_{4}$ \( 1 - 11264 T + 155306550 T^{2} - 11264 p^{5} T^{3} + p^{10} T^{4} \)
47$D_{4}$ \( 1 + 28116 T + 642581038 T^{2} + 28116 p^{5} T^{3} + p^{10} T^{4} \)
53$D_{4}$ \( 1 + 46984 T + 1367689610 T^{2} + 46984 p^{5} T^{3} + p^{10} T^{4} \)
59$D_{4}$ \( 1 + 20788 T + 264847334 T^{2} + 20788 p^{5} T^{3} + p^{10} T^{4} \)
61$D_{4}$ \( 1 + 11770 T + 1507312467 T^{2} + 11770 p^{5} T^{3} + p^{10} T^{4} \)
67$D_{4}$ \( 1 - 34522 T + 2997408975 T^{2} - 34522 p^{5} T^{3} + p^{10} T^{4} \)
71$D_{4}$ \( 1 + 103016 T + 6203258126 T^{2} + 103016 p^{5} T^{3} + p^{10} T^{4} \)
73$D_{4}$ \( 1 + 56158 T + 4934132787 T^{2} + 56158 p^{5} T^{3} + p^{10} T^{4} \)
79$D_{4}$ \( 1 - 16010 T + 870279783 T^{2} - 16010 p^{5} T^{3} + p^{10} T^{4} \)
83$D_{4}$ \( 1 + 86216 T + 7112504390 T^{2} + 86216 p^{5} T^{3} + p^{10} T^{4} \)
89$D_{4}$ \( 1 + 172164 T + 17420861122 T^{2} + 172164 p^{5} T^{3} + p^{10} T^{4} \)
97$D_{4}$ \( 1 + 139430 T + 17569513899 T^{2} + 139430 p^{5} T^{3} + p^{10} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.12399811480340052664838100100, −10.91279058116287885703254881569, −10.21362616409427681986041140923, −9.747350217479804931814623523968, −9.319601993266546360621595961654, −8.529470852019207791552734739260, −8.132421623312214346868230313071, −7.909254608087315194262929492674, −7.09313219375486354265743190368, −6.72388649694844508326146831985, −5.84767039759845279379789391621, −5.59506050287065168445544421939, −4.57495707876450096826171574134, −4.42205497914335082286236968370, −3.39813979489656910697314726116, −3.08352102855011865526094129326, −1.78602295861190413897918150371, −1.59517923126121928059367926706, 0, 0, 1.59517923126121928059367926706, 1.78602295861190413897918150371, 3.08352102855011865526094129326, 3.39813979489656910697314726116, 4.42205497914335082286236968370, 4.57495707876450096826171574134, 5.59506050287065168445544421939, 5.84767039759845279379789391621, 6.72388649694844508326146831985, 7.09313219375486354265743190368, 7.909254608087315194262929492674, 8.132421623312214346868230313071, 8.529470852019207791552734739260, 9.319601993266546360621595961654, 9.747350217479804931814623523968, 10.21362616409427681986041140923, 10.91279058116287885703254881569, 11.12399811480340052664838100100

Graph of the $Z$-function along the critical line