L(s) = 1 | + 4·13-s − 25-s + 16·37-s + 11·49-s − 8·61-s − 2·73-s + 10·97-s − 32·109-s + 5·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 14·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯ |
L(s) = 1 | + 1.10·13-s − 1/5·25-s + 2.63·37-s + 11/7·49-s − 1.02·61-s − 0.234·73-s + 1.01·97-s − 3.06·109-s + 5/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.07·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 46656 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 46656 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.412200236\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.412200236\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | | \( 1 \) |
| 3 | | \( 1 \) |
good | 5 | $C_2$ | \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \) |
| 7 | $C_2$ | \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \) |
| 11 | $C_2^2$ | \( 1 - 5 T^{2} + p^{2} T^{4} \) |
| 13 | $C_2$ | \( ( 1 - 2 T + p T^{2} )^{2} \) |
| 17 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 19 | $C_2^2$ | \( 1 + 10 T^{2} + p^{2} T^{4} \) |
| 23 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 29 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 31 | $C_2^2$ | \( 1 - 35 T^{2} + p^{2} T^{4} \) |
| 37 | $C_2$ | \( ( 1 - 8 T + p T^{2} )^{2} \) |
| 41 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 43 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 47 | $C_2^2$ | \( 1 - 14 T^{2} + p^{2} T^{4} \) |
| 53 | $C_2$ | \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \) |
| 59 | $C_2^2$ | \( 1 + 10 T^{2} + p^{2} T^{4} \) |
| 61 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 67 | $C_2$ | \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \) |
| 71 | $C_2^2$ | \( 1 + 34 T^{2} + p^{2} T^{4} \) |
| 73 | $C_2$ | \( ( 1 + T + p T^{2} )^{2} \) |
| 79 | $C_2^2$ | \( 1 - 146 T^{2} + p^{2} T^{4} \) |
| 83 | $C_2^2$ | \( 1 + 139 T^{2} + p^{2} T^{4} \) |
| 89 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 97 | $C_2$ | \( ( 1 - 5 T + p T^{2} )^{2} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.14423322094502625101304435994, −9.635465166070216998151901467682, −9.066001309744365823327444122515, −8.727342703433942323612387864535, −7.945065034910145780074668335810, −7.73450851855533946982453483051, −6.96485219253412743306939417835, −6.31434137464069894052481006424, −5.92823368311727748389574118289, −5.31961077903038818730215894070, −4.41903985209310240262617108969, −4.00776995973708453057460807456, −3.14953561814988499625276266057, −2.34568694822086359509071833814, −1.13855930596506118231741563244,
1.13855930596506118231741563244, 2.34568694822086359509071833814, 3.14953561814988499625276266057, 4.00776995973708453057460807456, 4.41903985209310240262617108969, 5.31961077903038818730215894070, 5.92823368311727748389574118289, 6.31434137464069894052481006424, 6.96485219253412743306939417835, 7.73450851855533946982453483051, 7.945065034910145780074668335810, 8.727342703433942323612387864535, 9.066001309744365823327444122515, 9.635465166070216998151901467682, 10.14423322094502625101304435994