L(s) = 1 | − 2-s + 4-s + 2·5-s − 4·7-s − 8-s − 2·10-s − 4·13-s + 4·14-s + 16-s + 4·17-s − 4·19-s + 2·20-s − 12·23-s − 3·25-s + 4·26-s − 4·28-s + 4·29-s − 4·31-s − 32-s − 4·34-s − 8·35-s + 4·38-s − 2·40-s − 16·41-s − 16·43-s + 12·46-s − 49-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s + 0.894·5-s − 1.51·7-s − 0.353·8-s − 0.632·10-s − 1.10·13-s + 1.06·14-s + 1/4·16-s + 0.970·17-s − 0.917·19-s + 0.447·20-s − 2.50·23-s − 3/5·25-s + 0.784·26-s − 0.755·28-s + 0.742·29-s − 0.718·31-s − 0.176·32-s − 0.685·34-s − 1.35·35-s + 0.648·38-s − 0.316·40-s − 2.49·41-s − 2.43·43-s + 1.76·46-s − 1/7·49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 46656 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 46656 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | $C_1$ | \( 1 + T \) |
| 3 | | \( 1 \) |
good | 5 | $C_2$$\times$$C_2$ | \( ( 1 - 3 T + p T^{2} )( 1 + T + p T^{2} ) \) |
| 7 | $C_2$$\times$$C_2$ | \( ( 1 + T + p T^{2} )( 1 + 3 T + p T^{2} ) \) |
| 11 | $C_2$ | \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \) |
| 13 | $C_2$$\times$$C_2$ | \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 17 | $C_2$$\times$$C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \) |
| 19 | $C_2$$\times$$C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 23 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) |
| 29 | $C_2$$\times$$C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 31 | $C_2$$\times$$C_2$ | \( ( 1 - 5 T + p T^{2} )( 1 + 9 T + p T^{2} ) \) |
| 37 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 41 | $C_2$$\times$$C_2$ | \( ( 1 + 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 43 | $C_2$$\times$$C_2$ | \( ( 1 + 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 47 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 53 | $C_2$$\times$$C_2$ | \( ( 1 - 13 T + p T^{2} )( 1 - 9 T + p T^{2} ) \) |
| 59 | $C_2$ | \( ( 1 - 12 T + p T^{2} )^{2} \) |
| 61 | $C_2$ | \( ( 1 - 8 T + p T^{2} )^{2} \) |
| 67 | $C_2$$\times$$C_2$ | \( ( 1 - 14 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 71 | $C_2$$\times$$C_2$ | \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 73 | $C_2$$\times$$C_2$ | \( ( 1 - 9 T + p T^{2} )( 1 + 7 T + p T^{2} ) \) |
| 79 | $C_2$$\times$$C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \) |
| 83 | $C_2$ | \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \) |
| 89 | $C_2$$\times$$C_2$ | \( ( 1 - 14 T + p T^{2} )( 1 + 18 T + p T^{2} ) \) |
| 97 | $C_2$$\times$$C_2$ | \( ( 1 + T + p T^{2} )( 1 + 9 T + p T^{2} ) \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.0202446739, −14.6300193933, −14.2102009910, −13.5531192066, −13.1830201225, −12.9092715036, −12.0676204446, −11.9118486001, −11.5819076131, −10.3624488043, −10.1152647782, −9.87204525884, −9.84146493708, −8.91559121548, −8.26804890939, −8.10820525524, −7.05548790835, −6.73860900675, −6.35747051338, −5.45005979068, −5.37363015538, −3.95567381405, −3.52341555618, −2.44850978333, −1.93512932155, 0,
1.93512932155, 2.44850978333, 3.52341555618, 3.95567381405, 5.37363015538, 5.45005979068, 6.35747051338, 6.73860900675, 7.05548790835, 8.10820525524, 8.26804890939, 8.91559121548, 9.84146493708, 9.87204525884, 10.1152647782, 10.3624488043, 11.5819076131, 11.9118486001, 12.0676204446, 12.9092715036, 13.1830201225, 13.5531192066, 14.2102009910, 14.6300193933, 15.0202446739