Properties

Label 4-6e6-1.1-c1e2-0-16
Degree $4$
Conductor $46656$
Sign $-1$
Analytic cond. $2.97482$
Root an. cond. $1.31330$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 2·5-s − 4·7-s − 8-s − 2·10-s − 4·13-s + 4·14-s + 16-s + 4·17-s − 4·19-s + 2·20-s − 12·23-s − 3·25-s + 4·26-s − 4·28-s + 4·29-s − 4·31-s − 32-s − 4·34-s − 8·35-s + 4·38-s − 2·40-s − 16·41-s − 16·43-s + 12·46-s − 49-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.894·5-s − 1.51·7-s − 0.353·8-s − 0.632·10-s − 1.10·13-s + 1.06·14-s + 1/4·16-s + 0.970·17-s − 0.917·19-s + 0.447·20-s − 2.50·23-s − 3/5·25-s + 0.784·26-s − 0.755·28-s + 0.742·29-s − 0.718·31-s − 0.176·32-s − 0.685·34-s − 1.35·35-s + 0.648·38-s − 0.316·40-s − 2.49·41-s − 2.43·43-s + 1.76·46-s − 1/7·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 46656 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 46656 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(46656\)    =    \(2^{6} \cdot 3^{6}\)
Sign: $-1$
Analytic conductor: \(2.97482\)
Root analytic conductor: \(1.31330\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 46656,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( 1 + T \)
3 \( 1 \)
good5$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + T + p T^{2} ) \)
7$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
11$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
13$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \)
19$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
23$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
29$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
31$C_2$$\times$$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
41$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
43$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
47$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
53$C_2$$\times$$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 - 9 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
67$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
71$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
79$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \)
83$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
89$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
97$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 9 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.0202446739, −14.6300193933, −14.2102009910, −13.5531192066, −13.1830201225, −12.9092715036, −12.0676204446, −11.9118486001, −11.5819076131, −10.3624488043, −10.1152647782, −9.87204525884, −9.84146493708, −8.91559121548, −8.26804890939, −8.10820525524, −7.05548790835, −6.73860900675, −6.35747051338, −5.45005979068, −5.37363015538, −3.95567381405, −3.52341555618, −2.44850978333, −1.93512932155, 0, 1.93512932155, 2.44850978333, 3.52341555618, 3.95567381405, 5.37363015538, 5.45005979068, 6.35747051338, 6.73860900675, 7.05548790835, 8.10820525524, 8.26804890939, 8.91559121548, 9.84146493708, 9.87204525884, 10.1152647782, 10.3624488043, 11.5819076131, 11.9118486001, 12.0676204446, 12.9092715036, 13.1830201225, 13.5531192066, 14.2102009910, 14.6300193933, 15.0202446739

Graph of the $Z$-function along the critical line