L(s) = 1 | + 2-s + 4-s − 4·5-s − 4·7-s + 8-s − 4·10-s + 6·11-s − 4·13-s − 4·14-s + 16-s + 4·17-s − 4·19-s − 4·20-s + 6·22-s + 3·25-s − 4·26-s − 4·28-s − 8·29-s − 4·31-s + 32-s + 4·34-s + 16·35-s − 4·38-s − 4·40-s − 4·41-s − 16·43-s + 6·44-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s − 1.78·5-s − 1.51·7-s + 0.353·8-s − 1.26·10-s + 1.80·11-s − 1.10·13-s − 1.06·14-s + 1/4·16-s + 0.970·17-s − 0.917·19-s − 0.894·20-s + 1.27·22-s + 3/5·25-s − 0.784·26-s − 0.755·28-s − 1.48·29-s − 0.718·31-s + 0.176·32-s + 0.685·34-s + 2.70·35-s − 0.648·38-s − 0.632·40-s − 0.624·41-s − 2.43·43-s + 0.904·44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 46656 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 46656 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | $C_1$ | \( 1 - T \) |
| 3 | | \( 1 \) |
good | 5 | $C_2$$\times$$C_2$ | \( ( 1 + T + p T^{2} )( 1 + 3 T + p T^{2} ) \) |
| 7 | $C_2$$\times$$C_2$ | \( ( 1 + T + p T^{2} )( 1 + 3 T + p T^{2} ) \) |
| 11 | $C_2$ | \( ( 1 - 3 T + p T^{2} )^{2} \) |
| 13 | $C_2$$\times$$C_2$ | \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \) |
| 17 | $C_2$$\times$$C_2$ | \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \) |
| 19 | $C_2$$\times$$C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 23 | $C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 29 | $C_2$$\times$$C_2$ | \( ( 1 + 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 31 | $C_2$$\times$$C_2$ | \( ( 1 - 5 T + p T^{2} )( 1 + 9 T + p T^{2} ) \) |
| 37 | $C_2$ | \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) |
| 41 | $C_2$$\times$$C_2$ | \( ( 1 - 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 43 | $C_2$$\times$$C_2$ | \( ( 1 + 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) |
| 47 | $C_2$ | \( ( 1 + 6 T + p T^{2} )^{2} \) |
| 53 | $C_2$$\times$$C_2$ | \( ( 1 - 13 T + p T^{2} )( 1 + 9 T + p T^{2} ) \) |
| 59 | $C_2$ | \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 61 | $C_2$ | \( ( 1 - 8 T + p T^{2} )^{2} \) |
| 67 | $C_2$$\times$$C_2$ | \( ( 1 - 14 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) |
| 71 | $C_2$$\times$$C_2$ | \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \) |
| 73 | $C_2$$\times$$C_2$ | \( ( 1 - 9 T + p T^{2} )( 1 + 7 T + p T^{2} ) \) |
| 79 | $C_2$$\times$$C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \) |
| 83 | $C_2$ | \( ( 1 - 3 T + p T^{2} )^{2} \) |
| 89 | $C_2$$\times$$C_2$ | \( ( 1 - 18 T + p T^{2} )( 1 - 14 T + p T^{2} ) \) |
| 97 | $C_2$$\times$$C_2$ | \( ( 1 + T + p T^{2} )( 1 + 9 T + p T^{2} ) \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.0202446739, −14.6300193933, −14.4794814242, −13.5531192066, −12.9869991773, −12.9092715036, −12.0676204446, −11.9899059112, −11.5819076131, −11.2194720778, −10.3624488043, −9.84146493708, −9.51274132652, −8.91559121548, −8.10820525524, −7.82723843094, −7.05548790835, −6.71508725989, −6.35747051338, −5.45005979068, −4.77709333112, −3.95567381405, −3.52341555618, −3.38549178369, −1.93512932155, 0,
1.93512932155, 3.38549178369, 3.52341555618, 3.95567381405, 4.77709333112, 5.45005979068, 6.35747051338, 6.71508725989, 7.05548790835, 7.82723843094, 8.10820525524, 8.91559121548, 9.51274132652, 9.84146493708, 10.3624488043, 11.2194720778, 11.5819076131, 11.9899059112, 12.0676204446, 12.9092715036, 12.9869991773, 13.5531192066, 14.4794814242, 14.6300193933, 15.0202446739