Properties

Label 4-6e6-1.1-c1e2-0-13
Degree $4$
Conductor $46656$
Sign $-1$
Analytic cond. $2.97482$
Root an. cond. $1.31330$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·7-s + 2·13-s − 2·19-s + 6·25-s − 8·31-s − 18·37-s − 16·43-s + 13·49-s − 10·61-s + 22·67-s + 2·73-s − 10·79-s − 12·91-s + 10·97-s + 2·103-s − 28·109-s − 6·121-s + 127-s + 131-s + 12·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  − 2.26·7-s + 0.554·13-s − 0.458·19-s + 6/5·25-s − 1.43·31-s − 2.95·37-s − 2.43·43-s + 13/7·49-s − 1.28·61-s + 2.68·67-s + 0.234·73-s − 1.12·79-s − 1.25·91-s + 1.01·97-s + 0.197·103-s − 2.68·109-s − 0.545·121-s + 0.0887·127-s + 0.0873·131-s + 1.04·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 46656 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 46656 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(46656\)    =    \(2^{6} \cdot 3^{6}\)
Sign: $-1$
Analytic conductor: \(2.97482\)
Root analytic conductor: \(1.31330\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 46656,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
7$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
19$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 11 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.05433643313669533911783232246, −9.397687695952564808383582699781, −8.806587663978251937370981617555, −8.655801172150449552881383118942, −7.79497553082532979201942816895, −6.95550481778817521461633350929, −6.65045650092432229207532369718, −6.44248673632066345518308551587, −5.48459428248370426498378218555, −5.10755730919050596352378085939, −3.99250331289836498435902686175, −3.36478379045069074059258347613, −3.09788365205681643264055516753, −1.81832624891237728767312244270, 0, 1.81832624891237728767312244270, 3.09788365205681643264055516753, 3.36478379045069074059258347613, 3.99250331289836498435902686175, 5.10755730919050596352378085939, 5.48459428248370426498378218555, 6.44248673632066345518308551587, 6.65045650092432229207532369718, 6.95550481778817521461633350929, 7.79497553082532979201942816895, 8.655801172150449552881383118942, 8.806587663978251937370981617555, 9.397687695952564808383582699781, 10.05433643313669533911783232246

Graph of the $Z$-function along the critical line