L(s) = 1 | − 2·4-s − 2·7-s + 4·16-s − 10·25-s + 4·28-s − 8·31-s − 11·49-s − 8·64-s − 14·73-s + 34·79-s − 38·97-s + 20·100-s − 26·103-s − 8·112-s − 22·121-s + 16·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 169-s + 173-s + ⋯ |
L(s) = 1 | − 4-s − 0.755·7-s + 16-s − 2·25-s + 0.755·28-s − 1.43·31-s − 1.57·49-s − 64-s − 1.63·73-s + 3.82·79-s − 3.85·97-s + 2·100-s − 2.56·103-s − 0.755·112-s − 2·121-s + 1.43·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.0769·169-s + 0.0760·173-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 46656 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 46656 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $\Gal(F_p)$ | $F_p(T)$ |
---|
bad | 2 | $C_2$ | \( 1 + p T^{2} \) |
| 3 | | \( 1 \) |
good | 5 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 7 | $C_2$ | \( ( 1 + T + p T^{2} )^{2} \) |
| 11 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 13 | $C_2$ | \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \) |
| 17 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 19 | $C_2$ | \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \) |
| 23 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 29 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 31 | $C_2$ | \( ( 1 + 4 T + p T^{2} )^{2} \) |
| 37 | $C_2$ | \( ( 1 - 11 T + p T^{2} )( 1 + 11 T + p T^{2} ) \) |
| 41 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 43 | $C_2$ | \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) |
| 47 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 53 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 59 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 61 | $C_2$ | \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \) |
| 67 | $C_2$ | \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \) |
| 71 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 73 | $C_2$ | \( ( 1 + 7 T + p T^{2} )^{2} \) |
| 79 | $C_2$ | \( ( 1 - 17 T + p T^{2} )^{2} \) |
| 83 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 89 | $C_2$ | \( ( 1 + p T^{2} )^{2} \) |
| 97 | $C_2$ | \( ( 1 + 19 T + p T^{2} )^{2} \) |
show more | | |
show less | | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.732354930302059235189979033173, −9.429199208210393651255146412199, −9.093756787868480250299391378087, −8.217650367462526737991465554229, −8.013308166903493545899536406476, −7.33966183117961392379729992729, −6.66054107823412239247003697818, −6.04893540000987436402649531985, −5.50710978221504476175964668301, −4.97480875199317599127464128318, −4.04304401379743272242521882180, −3.74735768991078116659064649628, −2.90681031253330114231046316229, −1.71126395023482908495018202224, 0,
1.71126395023482908495018202224, 2.90681031253330114231046316229, 3.74735768991078116659064649628, 4.04304401379743272242521882180, 4.97480875199317599127464128318, 5.50710978221504476175964668301, 6.04893540000987436402649531985, 6.66054107823412239247003697818, 7.33966183117961392379729992729, 8.013308166903493545899536406476, 8.217650367462526737991465554229, 9.093756787868480250299391378087, 9.429199208210393651255146412199, 9.732354930302059235189979033173