Properties

Label 4-6900e2-1.1-c1e2-0-0
Degree $4$
Conductor $47610000$
Sign $1$
Analytic cond. $3035.65$
Root an. cond. $7.42272$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9-s − 4·19-s − 12·29-s − 8·31-s + 12·41-s − 2·49-s + 12·59-s − 20·61-s − 12·71-s + 20·79-s + 81-s − 12·89-s − 12·101-s − 4·109-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 22·169-s + 4·171-s + 173-s + ⋯
L(s)  = 1  − 1/3·9-s − 0.917·19-s − 2.22·29-s − 1.43·31-s + 1.87·41-s − 2/7·49-s + 1.56·59-s − 2.56·61-s − 1.42·71-s + 2.25·79-s + 1/9·81-s − 1.27·89-s − 1.19·101-s − 0.383·109-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s + 0.305·171-s + 0.0760·173-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 47610000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 47610000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(47610000\)    =    \(2^{4} \cdot 3^{2} \cdot 5^{4} \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(3035.65\)
Root analytic conductor: \(7.42272\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 47610000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5701159516\)
\(L(\frac12)\) \(\approx\) \(0.5701159516\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + T^{2} \)
5 \( 1 \)
23$C_2$ \( 1 + T^{2} \)
good7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 142 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.894618990271258838482362332938, −7.84325177004026748885720684217, −7.51099364120308993359537574774, −7.14572339449530757266997410522, −6.74370874392025267337939275358, −6.30772265812298919956730078128, −6.09077571627175807068386095491, −5.58304154348854151435419205529, −5.38202517201003626289371329611, −5.11172777273964489799533236863, −4.28975302144482525278030970395, −4.26983774652200597141317345311, −3.84621089162059485664098388963, −3.40207338858494753362436711250, −2.91972584270743481853768013241, −2.53416881449374513532073560176, −1.92236265836866100869575257903, −1.75652702117879535468281759557, −1.02316651823771868751128250463, −0.19586715114141976357915167741, 0.19586715114141976357915167741, 1.02316651823771868751128250463, 1.75652702117879535468281759557, 1.92236265836866100869575257903, 2.53416881449374513532073560176, 2.91972584270743481853768013241, 3.40207338858494753362436711250, 3.84621089162059485664098388963, 4.26983774652200597141317345311, 4.28975302144482525278030970395, 5.11172777273964489799533236863, 5.38202517201003626289371329611, 5.58304154348854151435419205529, 6.09077571627175807068386095491, 6.30772265812298919956730078128, 6.74370874392025267337939275358, 7.14572339449530757266997410522, 7.51099364120308993359537574774, 7.84325177004026748885720684217, 7.894618990271258838482362332938

Graph of the $Z$-function along the critical line