Properties

Label 4-68e2-1.1-c1e2-0-6
Degree $4$
Conductor $4624$
Sign $1$
Analytic cond. $0.294830$
Root an. cond. $0.736873$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 2·7-s − 6·11-s + 4·13-s − 2·17-s + 4·19-s − 4·21-s − 6·23-s + 2·25-s − 2·27-s − 2·31-s − 12·33-s + 16·37-s + 8·39-s − 12·41-s + 4·43-s − 8·49-s − 4·51-s + 12·53-s + 8·57-s + 12·59-s − 8·61-s + 16·67-s − 12·69-s − 6·71-s + 4·73-s + 4·75-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.755·7-s − 1.80·11-s + 1.10·13-s − 0.485·17-s + 0.917·19-s − 0.872·21-s − 1.25·23-s + 2/5·25-s − 0.384·27-s − 0.359·31-s − 2.08·33-s + 2.63·37-s + 1.28·39-s − 1.87·41-s + 0.609·43-s − 8/7·49-s − 0.560·51-s + 1.64·53-s + 1.05·57-s + 1.56·59-s − 1.02·61-s + 1.95·67-s − 1.44·69-s − 0.712·71-s + 0.468·73-s + 0.461·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4624 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4624 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(4624\)    =    \(2^{4} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(0.294830\)
Root analytic conductor: \(0.736873\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 4624,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9928162223\)
\(L(\frac12)\) \(\approx\) \(0.9928162223\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
17$C_1$ \( ( 1 + T )^{2} \)
good3$D_{4}$ \( 1 - 2 T + 4 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
5$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
7$D_{4}$ \( 1 + 2 T + 12 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 + 6 T + 28 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 - 4 T + 18 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 - 4 T + 30 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 + 6 T + 52 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 46 T^{2} + p^{2} T^{4} \)
31$D_{4}$ \( 1 + 2 T + 36 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 - 16 T + 126 T^{2} - 16 p T^{3} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$D_{4}$ \( 1 - 4 T - 18 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
47$C_2^2$ \( 1 + 46 T^{2} + p^{2} T^{4} \)
53$D_{4}$ \( 1 - 12 T + 94 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 12 T + 142 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 + 8 T + 126 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 - 16 T + 150 T^{2} - 16 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 + 6 T + 124 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
79$D_{4}$ \( 1 + 14 T + 180 T^{2} + 14 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 + 12 T + 190 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 - 12 T + 202 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 - 4 T + 150 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.98802756398736199380475449543, −14.54787209899213773355774481944, −13.71694179562516136643627390396, −13.64254954364421247043782466442, −12.89878498621886309848267626598, −12.75367942326120361788196272822, −11.53273234940845816447213415980, −11.32712987605443907568586060344, −10.27052246725503930045048556869, −10.07592054412312095329842479452, −9.263026414816488689752299613577, −8.646958824177432743855930500283, −8.106902717026493810841304916570, −7.70076766939605653065525734959, −6.73900062082143014830718293103, −5.93177045679069081961924231806, −5.24049826920759417255257161277, −4.02594556598422966888602223977, −3.12538302478095309559579133561, −2.47307964120050239999721494055, 2.47307964120050239999721494055, 3.12538302478095309559579133561, 4.02594556598422966888602223977, 5.24049826920759417255257161277, 5.93177045679069081961924231806, 6.73900062082143014830718293103, 7.70076766939605653065525734959, 8.106902717026493810841304916570, 8.646958824177432743855930500283, 9.263026414816488689752299613577, 10.07592054412312095329842479452, 10.27052246725503930045048556869, 11.32712987605443907568586060344, 11.53273234940845816447213415980, 12.75367942326120361788196272822, 12.89878498621886309848267626598, 13.64254954364421247043782466442, 13.71694179562516136643627390396, 14.54787209899213773355774481944, 14.98802756398736199380475449543

Graph of the $Z$-function along the critical line