Properties

Label 4-684e2-1.1-c1e2-0-45
Degree $4$
Conductor $467856$
Sign $1$
Analytic cond. $29.8309$
Root an. cond. $2.33704$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 6·5-s − 8·13-s + 4·16-s + 6·17-s + 12·20-s + 17·25-s − 12·29-s + 4·37-s + 12·41-s − 13·49-s + 16·52-s − 24·53-s − 2·61-s − 8·64-s + 48·65-s − 12·68-s − 14·73-s − 24·80-s − 36·85-s − 24·89-s + 16·97-s − 34·100-s − 12·101-s − 32·109-s − 12·113-s + 24·116-s + ⋯
L(s)  = 1  − 4-s − 2.68·5-s − 2.21·13-s + 16-s + 1.45·17-s + 2.68·20-s + 17/5·25-s − 2.22·29-s + 0.657·37-s + 1.87·41-s − 1.85·49-s + 2.21·52-s − 3.29·53-s − 0.256·61-s − 64-s + 5.95·65-s − 1.45·68-s − 1.63·73-s − 2.68·80-s − 3.90·85-s − 2.54·89-s + 1.62·97-s − 3.39·100-s − 1.19·101-s − 3.06·109-s − 1.12·113-s + 2.22·116-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 467856 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 467856 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(467856\)    =    \(2^{4} \cdot 3^{4} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(29.8309\)
Root analytic conductor: \(2.33704\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 467856,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T^{2} \)
3 \( 1 \)
19$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
good5$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
11$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
13$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
47$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
53$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
61$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
73$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
89$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.968751144610877316457317025190, −7.80441727232688730491090849584, −7.43141403312000422638829977686, −7.09896358802950320449173631503, −6.24695455384273016222733694355, −5.51097905283736056328679977781, −5.16165536636701751832135979028, −4.41466206651142691425988858089, −4.38988833936187387176065759569, −3.73798930153556479954881225054, −3.23857552173567549926694025031, −2.76577588204614961513690244188, −1.40889938157129298285707376171, 0, 0, 1.40889938157129298285707376171, 2.76577588204614961513690244188, 3.23857552173567549926694025031, 3.73798930153556479954881225054, 4.38988833936187387176065759569, 4.41466206651142691425988858089, 5.16165536636701751832135979028, 5.51097905283736056328679977781, 6.24695455384273016222733694355, 7.09896358802950320449173631503, 7.43141403312000422638829977686, 7.80441727232688730491090849584, 7.968751144610877316457317025190

Graph of the $Z$-function along the critical line